Search for inelastic WIMP-iodine scattering with COSINE-100

Physical Review D

Published On 2023/11/16

We report the results of a search for inelastic scattering of weakly interacting massive particles (WIMPs) off I 127 nuclei using NaI (Tl) crystals with a data exposure of 97.7 kg· years from the COSINE-100 experiment. The signature of inelastic WIMP− I 127 scattering is a nuclear recoil accompanied by a 57.6 keV γ-ray from the prompt deexcitation, producing a more energetic signal compared to the typical WIMP nuclear recoil signal. We found no evidence for this inelastic scattering signature and set a 90% confidence level upper limit on the WIMP-proton spin-dependent, inelastic scattering cross section of 1.2× 10− 37 cm 2 at the WIMP mass 500 GeV/c 2.

Journal

Physical Review D

Volume

108

Issue

9

Page

092006

Authors

H.J. Kim

H.J. Kim

Kyungpook National University

H-Index

346

Research Interests

high energy physics

astro-particle physics

scintillator

University Profile Page

Sun Kee Kim

Sun Kee Kim

Seoul National University

H-Index

162

Research Interests

Physics

University Profile Page

Reina H. Maruyama

Reina H. Maruyama

Yale University

H-Index

110

Research Interests

nuclear particle astrophysics

dark matter

neutrinos

atomic physics

University Profile Page

Hyeong Joon Kim

Hyeong Joon Kim

Seoul National University

H-Index

97

Research Interests

University Profile Page

Hyung J. Kim

Hyung J. Kim

Carnegie Mellon University

H-Index

78

Research Interests

Theoretical and computational chemistry

molecular dynamics simulations of liquids

chemical reaction dynamics

ionic liquids

University Profile Page

Seonho Choi

Seonho Choi

Seoul National University

H-Index

57

Research Interests

Nuclear Physics

Experiments

Hadron Physics

University Profile Page

Junggon Kim

Junggon Kim

Carnegie Mellon University

H-Index

51

Research Interests

robotics

computer graphics

University Profile Page

Jay Hyun Jo

Jay Hyun Jo

Yale University

H-Index

41

Research Interests

Experimental Particle Physics

Neutrino Physics

University Profile Page

Liang Yang

Liang Yang

University of California, San Diego

H-Index

41

Research Interests

neutrinos

dark matter

fudamental symmetry

Other Articles from authors

Reina H. Maruyama

Reina H. Maruyama

Yale University

The Astrophysical Journal

Search for 10–1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube

We present the results of a search for 10–1000 GeV neutrinos from 2268 gamma-ray bursts (GRBs) over 8 yr of IceCube-DeepCore data. This work probes burst physics below the photosphere where electromagnetic radiation cannot escape. Neutrinos of tens of giga electronvolts are predicted in sub-photospheric collision of free-streaming neutrons with bulk-jet protons. In a first analysis, we searched for the most significant neutrino-GRB coincidence using six overlapping time windows centered on the prompt phase of each GRB. In a second analysis, we conducted a search for a group of GRBs, each individually too weak to be detectable, but potentially significant when combined. No evidence of neutrino emission is found for either analysis. The most significant neutrino coincidence is for Fermi-GBM GRB bn 140807500, with a p-value of 0.097 corrected for all trials. The binomial test used to search for a group of …

Scott Leonard

Scott Leonard

Oregon State University

Frontiers in Physiology

Effects of photon irradiation in the presence and absence of hindlimb unloading on the behavioral performance and metabolic pathways in the plasma of Fischer rats

Introduction: The space environment astronauts experience during space missions consists of multiple environmental challenges, including microgravity. In this study, we assessed the behavioral and cognitive performances of male Fisher rats 2 months after sham irradiation or total body irradiation with photons in the absence or presence of simulated microgravity. We analyzed the plasma collected 9 months after sham irradiation or total body irradiation for distinct alterations in metabolic pathways and to determine whether changes to metabolic measures were associated with specific behavioral and cognitive measures. Methods: A total of 344 male Fischer rats were irradiated with photons (6 MeV; 3, 8, or 10 Gy) in the absence or presence of simulated weightlessness achieved using hindlimb unloading (HU). To identify potential plasma biomarkers of photon radiation exposure or the HU condition for behavioral or cognitive performance, we performed regression analyses. Results: The behavioral effects of HU on activity levels in an open field, measures of anxiety in an elevated plus maze, and anhedonia in the M&M consumption test were more pronounced than those of photon irradiation. Phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism and biosynthesis showed very strong pathway changes, following photon irradiation and HU in animals irradiated with 3 Gy. Here, 29 out of 101 plasma metabolites were associated with 1 out of 13 behavioral measures. In the absence of HU, 22 metabolites were related to behavioral and cognitive measures. In HU animals that were sham-irradiated or irradiated with 8 Gy …

Govinda Adhikari

Govinda Adhikari

University of California, San Diego

Astroparticle Physics

Alpha backgrounds in NaI (Tl) crystals of COSINE-100

COSINE-100 is a dark matter direct detection experiment with 106 kg NaI (Tl) as the target material. 210 Pb and daughter isotopes are a dominant background in the WIMP region of interest and are detected via β decay and α decay. Analysis of the α channel complements the background model as observed in the β/γ channel. We present the measurement of the quenching factors and Monte Carlo simulation results and activity quantification of the α decay components of the COSINE-100 NaI (Tl) crystals. The data strongly indicate that the α decays probabilistically undergo two possible quenching factors but require further investigation. The fitted results are consistent with independent measurements and improve the overall understanding of the COSINE-100 backgrounds. Furthermore, the half-life of 216 Po has been measured to be 143. 4±1. 2 ms, which is consistent with and more precise than most current …

Jay Hyun Jo

Jay Hyun Jo

Yale University

arXiv preprint arXiv:2402.12480

A measurement of the sodium and iodine scintillation quenching factors across multiple NaI (Tl) detectors to identify systematics

The amount of light produced by nuclear recoils in scintillating targets is strongly quenched compared to that produced by electrons. A precise understanding of the quenching factor is particularly interesting for WIMP searches and CE{\nu}NS measurements since both rely on nuclear recoils, whereas energy calibrations are more readily accessible from electron recoils. There is a wide variation among the current measurements of the quenching factor in sodium iodide (NaI) crystals, especially below 10 keV, the energy region of interest for dark matter and CE{\nu}NS studies. A better understanding of the quenching factor in NaI(Tl) is of particular interest for resolving the decades-old puzzle in the field of dark matter between the null results of most WIMP searches and the claim for dark matter detection by the DAMA/LIBRA collaboration. In this work, we measured sodium and iodine quenching factors for five small NaI(Tl) crystals grown with similar thallium concentrations and growth procedures. Unlike previous experiments, multiple crystals were tested, with measurements made in the same experimental setup to control systematic effects. The quenching factors agree in all crystals we investigated, and both sodium and iodine quenching factors are smaller than those reported by DAMA/LIBRA. The dominant systematic effect was due to the electron equivalent energy calibration originating from the non-proportional behavior of the NaI(Tl) light yield at lower energies, potentially the cause for the discrepancies among the previous measurements.

Hyung J. Kim

Hyung J. Kim

Carnegie Mellon University

arXiv preprint arXiv:2402.15122

Measurements of low energy nuclear recoil quenching factors for Na and I recoils in the NaI (Tl) scintillator

Elastic scattering off nuclei in target detectors, involving interactions with dark matter and coherent elastic neutrino nuclear recoil (CENS), results in the deposition of low energy within the nuclei, dissipating rapidly through a combination of heat and ionization. The primary energy loss mechanism for nuclear recoil is heat, leading to consistently smaller measurable scintillation signals compared to electron recoils of the same energy. The nuclear recoil quenching factor (QF), representing the ratio of scintillation light yield produced by nuclear recoil to that of electron recoil at the same energy, is a critical parameter for understanding dark matter and neutrino interactions with nuclei. The low energy QF of NaI(Tl) crystals, commonly employed in dark matter searches and CENS measurements, is of substantial importance. Previous low energy QF measurements were constrained by contamination from photomultiplier tube (PMT)-induced noise, resulting in an observed light yield of approximately 15 photoelectrons per keVee (kilo-electron-volt electron-equivalent energy) and nuclear recoil energy above 5 keVnr (kilo-electron-volt nuclear recoil energy). Through enhanced crystal encapsulation, an increased light yield of around 26 photoelectrons per keVee is achieved. This improvement enables the measurement of the nuclear recoil QF for sodium nuclei at an energy of 3.8 0.6 keVnr with a QF of 11.2 1.7%. Furthermore, a reevaluation of previously reported QF results is conducted, incorporating enhancements in low energy events based on waveform simulation. The outcomes are generally consistent with various recent QF measurements for …

Jay Hyun Jo

Jay Hyun Jo

Yale University

Physical Review Letters

First Measurement of Meson Production in Neutrino Interactions on Argon with MicroBooNE

We present a measurement of η production from neutrino interactions on argon with the MicroBooNE detector. The modeling of resonant neutrino interactions on argon is a critical aspect of the neutrino oscillation physics program being carried out by the DUNE and Short Baseline Neutrino programs. η production in neutrino interactions provides a powerful new probe of resonant interactions, complementary to pion channels, and is particularly suited to the study of higher-order resonances beyond the Δ (1232). We measure a flux-integrated cross section for neutrino-induced η production on argon of 3.22±0.84 (stat)±0.86 (syst) 10− 41 cm 2/nucleon. By demonstrating the successful reconstruction of the two photons resulting from η production, this analysis enables a novel calibration technique for electromagnetic showers in GeV accelerator neutrino experiments.

William G. Thompson

William G. Thompson

Yale University

The Astrophysical Journal

Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory

The IceCube Neutrino Observatory has been continuously taking data to search for

Hyeong Joon Kim

Hyeong Joon Kim

Seoul National University

arXiv preprint arXiv:2402.15122

Measurements of low energy nuclear recoil quenching factors for Na and I recoils in the NaI (Tl) scintillator

Elastic scattering off nuclei in target detectors, involving interactions with dark matter and coherent elastic neutrino nuclear recoil (CENS), results in the deposition of low energy within the nuclei, dissipating rapidly through a combination of heat and ionization. The primary energy loss mechanism for nuclear recoil is heat, leading to consistently smaller measurable scintillation signals compared to electron recoils of the same energy. The nuclear recoil quenching factor (QF), representing the ratio of scintillation light yield produced by nuclear recoil to that of electron recoil at the same energy, is a critical parameter for understanding dark matter and neutrino interactions with nuclei. The low energy QF of NaI(Tl) crystals, commonly employed in dark matter searches and CENS measurements, is of substantial importance. Previous low energy QF measurements were constrained by contamination from photomultiplier tube (PMT)-induced noise, resulting in an observed light yield of approximately 15 photoelectrons per keVee (kilo-electron-volt electron-equivalent energy) and nuclear recoil energy above 5 keVnr (kilo-electron-volt nuclear recoil energy). Through enhanced crystal encapsulation, an increased light yield of around 26 photoelectrons per keVee is achieved. This improvement enables the measurement of the nuclear recoil QF for sodium nuclei at an energy of 3.8 0.6 keVnr with a QF of 11.2 1.7%. Furthermore, a reevaluation of previously reported QF results is conducted, incorporating enhancements in low energy events based on waveform simulation. The outcomes are generally consistent with various recent QF measurements for …

William G. Thompson

William G. Thompson

Yale University

arXiv preprint arXiv:2402.18026

Characterization of the Astrophysical Diffuse Neutrino Flux using Starting Track Events in IceCube

A measurement of the diffuse astrophysical neutrino spectrum is presented using IceCube data collected from 2011-2022 (10.3 years). We developed novel detection techniques to search for events with a contained vertex and exiting track induced by muon neutrinos undergoing a charged-current interaction. Searching for these starting track events allows us to not only more effectively reject atmospheric muons but also atmospheric neutrino backgrounds in the southern sky, opening a new window to the sub-100 TeV astrophysical neutrino sky. The event selection is constructed using a dynamic starting track veto and machine learning algorithms. We use this data to measure the astrophysical diffuse flux as a single power law flux (SPL) with a best-fit spectral index of and per-flavor normalization of $\phi^{\mathrm{Astro}}_{\mathrm{per-flavor}} = 1.68 ^{+0.19}_{-0.22} \times 10^{-18} \times \mathrm{GeV}^{-1} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1}$ (at 100 TeV). The sensitive energy range for this dataset is 3 - 550 TeV under the SPL assumption. This data was also used to measure the flux under a broken power law, however we did not find any evidence of a low energy cutoff.

Seonho Choi

Seonho Choi

Seoul National University

Journal of High Energy Physics

Search for the semi-muonic charmonium decay J/ψ→ D− μ+ νμ+ cc

Using (10087±44)× 10 6 J/ψ events collected with the BESIII detector at the BEPCII e+ e− storage ring at the center-of-mass energy of= 3.097 GeV, we present a search for the rare semi-muonic charmonium decay J/ψ→ D− μ+ ν μ+ cc. Since no significant signal is observed, we set an upper limit of the branching fraction to be(J/ψ→ D− μ+ ν μ+ cc)< 5.6× 10− 7 at 90% confidence level. This is the first search for the weak decay of charmonium with a muon in the final state.

William G. Thompson

William G. Thompson

Yale University

arXiv preprint arXiv:2404.19589

Acceptance Tests of more than 10 000 Photomultiplier Tubes for the multi-PMT Digital Optical Modules of the IceCube Upgrade

More than 10,000 photomultiplier tubes (PMTs) with a diameter of 80 mm will be installed in multi-PMT Digital Optical Modules (mDOMs) of the IceCube Upgrade. These have been tested and pre-calibrated at two sites. A throughput of more than 1000 PMTs per week with both sites was achieved with a modular design of the testing facilities and highly automated testing procedures. The testing facilities can easily be adapted to other PMTs, such that they can, e.g., be re-used for testing the PMTs for IceCube-Gen2. Single photoelectron response, high voltage dependence, time resolution, prepulse, late pulse, afterpulse probabilities, and dark rates were measured for each PMT. We describe the design of the testing facilities, the testing procedures, and the results of the acceptance tests.

Seonho Choi

Seonho Choi

Seoul National University

Astroparticle Physics

Alpha backgrounds in NaI (Tl) crystals of COSINE-100

COSINE-100 is a dark matter direct detection experiment with 106 kg NaI (Tl) as the target material. 210 Pb and daughter isotopes are a dominant background in the WIMP region of interest and are detected via β decay and α decay. Analysis of the α channel complements the background model as observed in the β/γ channel. We present the measurement of the quenching factors and Monte Carlo simulation results and activity quantification of the α decay components of the COSINE-100 NaI (Tl) crystals. The data strongly indicate that the α decays probabilistically undergo two possible quenching factors but require further investigation. The fitted results are consistent with independent measurements and improve the overall understanding of the COSINE-100 backgrounds. Furthermore, the half-life of 216 Po has been measured to be 143. 4±1. 2 ms, which is consistent with and more precise than most current …

Sun Kee Kim

Sun Kee Kim

Seoul National University

arXiv preprint arXiv:2401.07476

Background study of the AMoRE-pilot experiment

We report a study on the background of the Advanced Molybdenum-Based Rare process Experiment (AMoRE), a search for neutrinoless double beta decay (\znbb) of Mo. The pilot stage of the experiment was conducted using 1.9 kg of \CAMOO~ crystals at the Yangyang Underground Laboratory, South Korea, from 2015 to 2018. We compared the measured energy spectra in three experimental configurations with the results of Monte Carlo simulations and identified the background sources in each configuration. We replaced several detector components and enhanced the neutron shielding to lower the background level between configurations. A limit on the half-life of decay of Mo was found at years at 90\% confidence level, based on the measured background and its modeling. Further reduction of the background rate in the AMoRE-I and AMoRE-II are discussed.

Reina H. Maruyama

Reina H. Maruyama

Yale University

arXiv preprint arXiv:2401.07462

Nonproportionality of NaI (Tl) Scintillation Detector for Dark Matter Search Experiments

We present a comprehensive study of the nonproportionality of NaI(Tl) scintillation detectors within the context of dark matter search experiments. Our investigation, which integrates COSINE-100 data with supplementary spectroscopy, measures light yields across diverse energy levels from full-energy peaks produced by the decays of various isotopes. These peaks of interest were produced by decays supported by both long and short-lived isotopes. Analyzing peaks from decays supported only by short-lived isotopes presented a unique challenge due to their limited statistics and overlapping energies, which was overcome by long-term data collection and a time-dependent analysis. A key achievement is the direct measurement of the 0.87 keV light yield, resulting from the cascade following electron capture decay of Na from internal contamination. This measurement, previously accessible only indirectly, deepens our understanding of NaI(Tl) scintillator behavior in the region of interest for dark matter searches. This study holds substantial implications for background modeling and the interpretation of dark matter signals in NaI(Tl) experiments.

Reina H. Maruyama

Reina H. Maruyama

Yale University

arXiv preprint arXiv:2402.12480

A measurement of the sodium and iodine scintillation quenching factors across multiple NaI (Tl) detectors to identify systematics

The amount of light produced by nuclear recoils in scintillating targets is strongly quenched compared to that produced by electrons. A precise understanding of the quenching factor is particularly interesting for WIMP searches and CE{\nu}NS measurements since both rely on nuclear recoils, whereas energy calibrations are more readily accessible from electron recoils. There is a wide variation among the current measurements of the quenching factor in sodium iodide (NaI) crystals, especially below 10 keV, the energy region of interest for dark matter and CE{\nu}NS studies. A better understanding of the quenching factor in NaI(Tl) is of particular interest for resolving the decades-old puzzle in the field of dark matter between the null results of most WIMP searches and the claim for dark matter detection by the DAMA/LIBRA collaboration. In this work, we measured sodium and iodine quenching factors for five small NaI(Tl) crystals grown with similar thallium concentrations and growth procedures. Unlike previous experiments, multiple crystals were tested, with measurements made in the same experimental setup to control systematic effects. The quenching factors agree in all crystals we investigated, and both sodium and iodine quenching factors are smaller than those reported by DAMA/LIBRA. The dominant systematic effect was due to the electron equivalent energy calibration originating from the non-proportional behavior of the NaI(Tl) light yield at lower energies, potentially the cause for the discrepancies among the previous measurements.

Sun Kee Kim

Sun Kee Kim

Seoul National University

arXiv preprint arXiv:2403.03004

Ultralight vector dark matter search using data from the KAGRA O3GK run

Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.

Reina H. Maruyama

Reina H. Maruyama

Yale University

Advancing Rydberg atom-based axion detection

Dark matter is the name that we give to the 84% of matter in the universe that interacts via gravity but negligibly with any of the other known forces. One compelling model for dark matter is the axion, as it simultaneously solves the existence of dark matter and the strong CP problem in QCD. The traditional axion experiment is called a haloscope, which consists of a strong magnetic field, a microwave cavity to resonantly enhance the converted photon, and a low-noise amplifier to enhance the inevitably tiny signal. This proceedings discusses the development of RAY (Rydberg atoms for Axions at Yale), a single photon detector that can be integrated into a standard haloscope. A major challenge of axion searches at higher masses is that the time required becomes increasingly long because of lower signal and increased quantum noise when using a standard haloscope. Eliminating this quantum noise can be …

Liang Yang

Liang Yang

University of California, San Diego

arXiv preprint arXiv:2403.14878

Offline tagging of radon-induced backgrounds in XENON1T and applicability to other liquid xenon detectors

This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using and events, and the root-mean-square convection speed was measured to be cm/s. Given this velocity field, background events can be tagged when they are followed by and decays, or preceded by decays. This was achieved by propagating a point cloud as directed by the velocity field, and searching for and decays or decays within a volume defined by the point cloud. In XENON1T, this tagging system achieved a background reduction of with an exposure loss of . The tagging algorithm was also used to produce a population of tagged events with a large enhancement in the fraction. We show that the performance can be improved in XENONnT, and that the performance of such a software-tagging approach can be expected to be further improved in a diffusion-limited scenario. Finally, a similar method might be useful to tag the cosmogenic background, which is relevant to the search for neutrinoless double-beta decay.

Govinda Adhikari

Govinda Adhikari

University of California, San Diego

arXiv preprint arXiv:2401.07462

Nonproportionality of NaI (Tl) Scintillation Detector for Dark Matter Search Experiments

We present a comprehensive study of the nonproportionality of NaI(Tl) scintillation detectors within the context of dark matter search experiments. Our investigation, which integrates COSINE-100 data with supplementary spectroscopy, measures light yields across diverse energy levels from full-energy peaks produced by the decays of various isotopes. These peaks of interest were produced by decays supported by both long and short-lived isotopes. Analyzing peaks from decays supported only by short-lived isotopes presented a unique challenge due to their limited statistics and overlapping energies, which was overcome by long-term data collection and a time-dependent analysis. A key achievement is the direct measurement of the 0.87 keV light yield, resulting from the cascade following electron capture decay of Na from internal contamination. This measurement, previously accessible only indirectly, deepens our understanding of NaI(Tl) scintillator behavior in the region of interest for dark matter searches. This study holds substantial implications for background modeling and the interpretation of dark matter signals in NaI(Tl) experiments.

Jay Hyun Jo

Jay Hyun Jo

Yale University

The European Physical Journal C

Measurement of double-differential cross sections for mesonless charged-current muon neutrino interactions on argon with final-state protons using the MicroBooNE detector

Normalized double-differential cross sections for top quark pair () production are measured in pp collisions at a centre-of-mass energy of 8 with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7. The measurement is performed in the dilepton final state. The cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution …

Other articles from Physical Review D journal

Laurent Lellouch

Laurent Lellouch

Aix-Marseille Université

Physical Review D

Hadronic vacuum polarization: comparing lattice QCD and data-driven results in systematically improvable ways

The precision with which hadronic vacuum polarization (HVP) is obtained determines how accurately important observables, such as the muon anomalous magnetic moment a μ or the low-energy running of the electromagnetic coupling α, are predicted. The two most precise approaches for determining HVP are dispersive relations combined with e+ e−→ hadrons cross section data and lattice QCD. However, the results obtained in these two approaches display significant tensions, whose origins are not understood. Here we present a framework that sheds light on this issue and—if the two approaches can be reconciled—allows them to be combined. Via this framework, we test the hypothesis that the tensions can be explained by modifying the R-ratio in different intervals of center-of-mass energy s. As ingredients, we consider observables that have been precisely determined in both approaches. These are the …

Fuquan Wang

Fuquan Wang

University of Wisconsin-Madison

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Christian Weber

Christian Weber

Technische Universität Berlin

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Dariescu

Dariescu

Universitatea Alexandru Ioan Cuza din Iasi

Physical Review D

Charged particles in the background of the Kiselev solution in power-Maxwell electrodynamics

In this work we analyze the motion of charged particles in the background of the Kiselev geometry, which is considered here as an exact solution in the context of power-Maxwell electrodynamics. As it is well known, one can use either an electric ansatz or a magnetic one for the nonlinear electromagnetic field. We study the motion of an electrically charged particle for an electrically charged black hole and also for a magnetically charged black hole. In the second case the motion is restricted to Poincaré cones of various angles, as expected.

Hiranya Peiris

Hiranya Peiris

University College London

Physical Review D

Analog vacuum decay from vacuum initial conditions

Ultracold atomic gases can undergo phase transitions that mimic relativistic vacuum decay, allowing us to empirically test early Universe physics in tabletop experiments. We investigate the physics of these analog systems, going beyond previous analyses of the classical equations of motion to study quantum fluctuations in the cold-atom false vacuum. We show that the fluctuation spectrum of this vacuum state agrees with the usual relativistic result in the regime where the classical analogy holds, providing further evidence for the suitability of these systems for studying vacuum decay. Using a suite of semiclassical lattice simulations, we simulate bubble nucleation from this analog vacuum state in a 1D homonuclear potassium-41 mixture, finding qualitative agreement with instanton predictions. We identify realistic parameters for this system that will allow us to study vacuum decay with current experimental …

Hiranya Peiris

Hiranya Peiris

University College London

Physical Review D

Deep learning insights into cosmological structure formation

The evolution of linear initial conditions present in the early Universe into extended halos of dark matter at late times can be computed using cosmological simulations. However, a theoretical understanding of this complex process remains elusive; in particular, the role of anisotropic information in the initial conditions in establishing the final mass of dark matter halos remains a long-standing puzzle. Here, we build a deep learning framework to investigate this question. We train a three-dimensional convolutional neural network to predict the mass of dark matter halos from the initial conditions, and quantify in full generality the amounts of information in the isotropic and anisotropic aspects of the initial density field about final halo masses. We find that anisotropies add a small, albeit statistically significant amount of information over that contained within spherical averages of the density field about final halo mass …

Charalampos Moustakidis

Charalampos Moustakidis

Aristotle University of Thessaloniki

Physical Review D

Constraints for the X17 boson from compact objects observations

We investigate the hypothetical X17 boson on neutron stars and quark stars (QSs) using various hadronic equation of states (EoSs) with phenomenological or microscopic origin. Our aim is to set realistic constraints on its coupling constant and the mass scaling, with respect to causality and various possible upper mass limits and the dimensionless tidal deformability Λ 1.4. In particular, we pay special attention to two main phenomenological parameters of the X17, one is related to the coupling constant g that it has with hadrons or quarks and the other with the in-medium effects through regulator C. Both are very crucial concerning the contribution on the total energy density and pressure. In the case of considering the X17 as a carrier of nuclear force in relativistic mean field theory, an admixture into the vector boson segment was constrained by 20% and 30%. In our investigation, we came to the general conclusion …

Charalampos Moustakidis

Charalampos Moustakidis

Aristotle University of Thessaloniki

Physical Review D

Hybrid stars in light of the HESS J1731-347 remnant and the PREX-II experiment

The recent analysis on the central compact object in the HESS J1731-347 remnant suggests interestingly small values for its mass and radius. Such an observation favors soft nuclear models that may be challenged by the observation of massive compact stars. In contrast, the recent PREX-II experiment, concerning the neutron skin thickness of Pb 208, points toward stiff equations of state that favor larger compact star radii. In the present study, we aim to explore the compatibility between stiff hadronic equations of state (favored by PREX-II) and the HESS J1731-347 remnant in the context of hybrid stars. For the construction of hybrid equations of state we use three widely employed Skyrme models combined with the well-known vector MIT bag model. Furthermore we consider two different scenarios concerning the energy density of the bag. In the first case, that of a constant bag parameter, we find that the resulting …

Claudia Moreno

Claudia Moreno

Universidad de Guadalajara

Physical Review D

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

Claudia Moreno

Claudia Moreno

Universidad de Guadalajara

Physical Review D

Post-Newtonian gravitational waves with cosmological constant from the Einstein-Hilbert theory

We study the compact binary dynamics in the post-Newtonian approach implemented to the Einstein-Hilbert action adding the cosmological constant Λ at first post-Newtonian (1PN) order. We consider very small values of Λ finding that it plays the role of a PN factor to derive the Lagrangian of a compact two-body system at the center of mass frame at 1PN. Furthermore, the phase function ϕ (t) is obtained from the balance equation, and the two polarizations h+ and h× are also calculated. We observe changes due to Λ only at very low frequencies, and we notice that it plays the role of “stretch” the spacetime such that both amplitudes become smaller. However, given its nearly negligible value, Λ has no relevance at higher frequencies whatsoever.

Ian M. Shoemaker

Ian M. Shoemaker

University of South Dakota

Physical Review D

Long-lived particles and the quiet Sun

The nuclear reaction network within the interior of the Sun is an efficient MeV physics factory and can produce long-lived particles generic to dark sector models. In this work we consider the sensitivity of satellite instruments, primarily the RHESSI spectrometer, that observe the quiet Sun in the MeV regime where backgrounds are low. We find that quiet Sun observations offer a powerful and complementary probe in regions of parameter space, where the long-lived particle decay length is longer than the radius of the Sun and shorter than the distance between the Sun and Earth. We comment on connections to recent model-building work on heavy neutral leptons coupled to neutrinos and high-quality axions from mirror symmetries.

Hao Y. Zhang / 张昊

Hao Y. Zhang / 张昊

University of Pennsylvania

Physical Review D

Intermediate defect groups, polarization pairs, and noninvertible duality defects

Within the framework of relative and absolute quantum field theories (QFTs), we present a general formalism for understanding polarizations of the intermediate defect group and constructing noninvertible duality defects in theories in 2 k spacetime dimensions with self-dual gauge fields. We introduce the polarization pair, which fully specifies absolute QFTs as far as their (k− 1)-form defect groups are concerned, including their (k− 1)-form symmetries, global structures (including discrete θ-angle), and local counterterms. Using the associated symmetry topological field theory (TFT), we show that the polarization pair is capable of succinctly describing topological manipulations, eg, gauging (k− 1)-form global symmetries and stacking counterterms, of absolute QFTs. Furthermore, automorphisms of the (k− 1)-form charge lattice naturally act on polarization pairs via their action on the defect group; they can be viewed as …

Igor Altsybeev

Igor Altsybeev

St. Petersburg State University

Physical Review D

Measurement of the fraction of jet longitudinal momentum carried by baryons in collisions

Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λ c+ baryons, z∥ ch, in hadronic collisions. The results are obtained in proton-proton (p p) collisions at s= 13 TeV at the LHC, with Λ c+ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of 3≤ p T Λ c+< 15 GeV/c and 7≤ p T jet ch< 15 GeV/c, respectively. The z∥ ch distribution is compared to a measurement of D 0-tagged charged jets in p p collisions as well as to pythia 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as …

Fabrizio BARONE

Fabrizio BARONE

Università degli Studi di Salerno

Physical Review D

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

John Veitch

John Veitch

University of Glasgow

Physical Review D

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

Elham E Khoda

Elham E Khoda

University of Washington

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

David Silvermyr

David Silvermyr

Lunds Universitet

Physical Review D

Measurement of the fraction of jet longitudinal momentum carried by baryons in collisions

Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λ c+ baryons, z∥ ch, in hadronic collisions. The results are obtained in proton-proton (p p) collisions at s= 13 TeV at the LHC, with Λ c+ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of 3≤ p T Λ c+< 15 GeV/c and 7≤ p T jet ch< 15 GeV/c, respectively. The z∥ ch distribution is compared to a measurement of D 0-tagged charged jets in p p collisions as well as to pythia 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as …

Giuseppe Callea

Giuseppe Callea

University of Glasgow

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Minsu Park

Minsu Park

University of Pennsylvania

Physical Review D

Atacama Cosmology Telescope: The persistence of neutrino self-interaction in cosmological measurements

We use data from the Atacama Cosmology Telescope (ACT) DR4 to search for the presence of neutrino self-interaction in the cosmic microwave background. Consistent with prior works, the posterior distributions we find are bimodal, with one mode consistent with Λ CDM and one where neutrinos strongly self-interact. By combining ACT data with large-scale information from WMAP, we find that a delayed onset of neutrino free streaming caused by significantly strong neutrino self-interaction is compatible with these data at the 2− 3 σ level. As seen in the past, the preference shifts to Λ CDM with the inclusion of Planck data. We determine that the preference for strong neutrino self-interaction is largely driven by angular scales corresponding to 700≲ ℓ≲ 1000 in the ACT E-mode polarization data. This region is expected to be key to discriminate between neutrino self-interacting modes and will soon be probed with …

Herodotos Herodotou

Herodotos Herodotou

Cyprus University of Technology

Physical Review D

Supersymmetric QCD on the lattice: Fine-tuning of the Yukawa couplings

We determine the fine-tuning of the Yukawa couplings of supersymmetric QCD, discretized on a lattice. We use perturbation theory at one-loop level. The modified minimal subtraction scheme (MS) is employed; by its definition, this scheme requires perturbative calculations, in the continuum and/or on the lattice. On the lattice, we utilize the Wilson formulation for gluon, quark, and gluino fields; for squark fields we use naive discretization. The sheer difficulties of this study lie in the fact that different components of squark fields mix among themselves at the quantum level and the action’s symmetries, such as parity and charge conjugation, allow an additional Yukawa coupling. Consequently, for an appropriate fine-tuning of the Yukawa terms, these mixings must be taken into account in the renormalization conditions. All Green’s functions and renormalization factors are analytic expressions depending on the number of …