Antonio Marquina

Antonio Marquina

Universidad de Valencia

H-index: 75

Europe-Spain

About Antonio Marquina

Antonio Marquina, With an exceptional h-index of 75 and a recent h-index of 65 (since 2020), a distinguished researcher at Universidad de Valencia, specializes in the field of Computational Fluid Dynamics, Variational models for signal processing, Computational methods for data analysis.

His recent articles reflect a diverse array of research interests and contributions to the field:

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Ultralight vector dark matter search using data from the KAGRA O3GK run

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO–Virgo observing run O3a

Frequency-dependent squeezed vacuum source for the Advanced Virgo gravitational-wave detector

The Advanced Virgo+ status

Virgo detector characterization and data quality: tools

Antonio Marquina Information

University

Universidad de Valencia

Position

Professor Applied Mathematics Universitat de Valencia

Citations(all)

52527

Citations(since 2020)

43891

Cited By

25429

hIndex(all)

75

hIndex(since 2020)

65

i10Index(all)

143

i10Index(since 2020)

121

Email

University Profile Page

Universidad de Valencia

Antonio Marquina Skills & Research Interests

Computational Fluid Dynamics

Variational models for signal processing

Computational methods for data analysis

Top articles of Antonio Marquina

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Authors

AG Abac,ML Chiofalo,G Nieradka,R Pegna,C North,R Bhandare,G Pierra,A Amato,JG Baier,D Chen,B Haskell,F Robinet,M Fyffe,M Arogeti,P Stevens,DD White,TF Davies,E Payne,M Wright,K Johansmeyer,K Hayama,P-F Cohadon,CG Collette,D Sellers,S Hoang,V Sipala,H Heitmann,T O'Hanlon,B Edelman,G McCarrol,AD Huddart,KD Sullivan,T Harder,A Garron,TA Clarke,YT Huang,J Junker,M Hennig,N Hirata,J Portell,R McCarthy,M Weinert,R Poulton,G Ballardin,D Bankar,A Bianchi,M Montani,CD Panzer,X Chen,R Takahashi,J Lange,K Schouteden,Yitian Chen,A Sasli,F Yang,LM Modafferi,ME Zucker,J O'Dell,D Lumaca,AP Spencer,M Millhouse,G Quéméner,M Norman,MJ Szczepańczyk,S-C Hsu,ST Countryman,C Chatterjee,AL James,KN Nagler,E Chassande-Mottin,W Kiendrebeogo,M Tacca,FJ Raab,TR Saravanan,VP Mitrofanov,S Bernuzzi,C Adamcewicz,L Conti,C Tong-Yu,J Golomb,X Li,A Perego,ERG von Reis,J Woehler,G Bogaert,F Fidecaro,B Shen,JM Ezquiaga,D Macri,V Juste,S Sachdev,JD Bentley,R Sturani,TP Lott IV,K Takatani,D Beniwal,U Dupletsa,A Boumerdassi,F Glotin,Y Lee,R Bhatt,A Couineaux,M Wade,N Kanda,J Novak,S Bini,I Ferrante,RA Alfaidi,N Johny,LE Sanchez,J Heinze,J Zhang,M Kinley-Hanlon,AJ Weinstein,T Sainrat,NN Janthalur,A Trovato,A Romero,K Tomita,DE McClelland,B Fornal,M Heurs,AM Gretarsson,A Chincarini,BB Lane,AE Romano,V Fafone,FY Khalili,F Linde,C Messick,A Heffernan,J Gargiulo,V JaberianHamedan,SW Reid,D Moraru,D Pathak,M Iwaya,G Grignani,T Yan,K AultONeal,SA Pai,Y Xu,IM Pinto,KW Chung,C Palomba,J Tissino,T Klinger,Ll M Mir,K Kwan,C Posnansky

Published Date

2024/3/5

Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U (1) B− L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U (1) B− L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.

Ultralight vector dark matter search using data from the KAGRA O3GK run

Authors

AG Abac,R Abbott,H Abe,I Abouelfettouh,F Acernese,K Ackley,C Adamcewicz,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,I Aguilar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Al-Jodah,C Alléné,A Allocca,S Al-Shammari,PA Altin,S Alvarez-Lopez,A Amato,L Amez-Droz,A Amorosi,C Amra,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Andia,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,J Anglin,S Ansoldi,JM Antelis,S Antier,M Aoumi,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,N Aritomi,F Armato,N Arnaud,M Arogeti,SM Aronson,KG Arun,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,G Avallone,S Babak,F Badaracco,C Badger,S Bae,S Bagnasco,E Bagui,Y Bai,JG Baier,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,S Banagiri,B Banerjee,D Bankar,P Baral,JC Barayoga,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,SD Barthelmy,MA Barton,I Bartos,S Basak,A Basalaev,R Bassiri,A Basti,M Bawaj,P Baxi,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,D Belardinelli,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M Ben Yaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,N Bevins,R Bhandare,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,S Bhowmick,A Bianchi,IA Bilenko,G Billingsley,A Binetti,S Bini,O Birnholtz,S Biscoveanu,A Bisht,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,F Bobba

Journal

arXiv preprint arXiv:2403.03004

Published Date

2024/3/5

Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,Y Asali,G Ashton,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,AM Baer,S Bagnasco,Y Bai,J Baird,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,A Branch,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,A Brillet,M Brinkmann

Journal

Physical Review D

Published Date

2024/1/5

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

Authors

C Fletcher,J Wood,R Hamburg,P Veres,CM Hui,E Bissaldi,MS Briggs,E Burns,WH Cleveland,MM Giles,A Goldstein,BA Hristov,D Kocevski,S Lesage,B Mailyan,C Malacaria,S Poolakkil,A von Kienlin,CA Wilson-Hodge,M Crnogorčević,J DeLaunay,A Tohuvavohu,R Caputo,SB Cenko,S Laha,T Parsotan,R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,Luca Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andríc,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare

Journal

arXiv preprint arXiv:2308.13666

Published Date

2023/8/25

The detection of GW170817 (Abbott et al. 2017b) coincident with the short gamma-ray burst GRB 170817A (Goldstein et al. 2017; Savchenko et al. 2017) was a groundbreaking discovery for the multimessenger era. Not only was it the first binary neutron star (BNS) merger detected by the gravitational-wave (GW) instruments Advanced LIGO (Aasi et al. 2015) and Advanced Virgo (Acernese et al. 2014), it was also the first, and to date only, GW detection with a confirmed electromagnetic (EM) counterpart. Since then, the search for EM emission from more of these extreme events has been at the forefront of multimessenger astronomy, particularly in the gamma-ray energy band, since GRB 170817A demonstrated that BNS mergers are a progenitor of short gamma-ray bursts (GRBs; Abbott et al. 2017a). GWs have also been observed from the mergers of other compact objects, such as binary black hole (BBH) and …

Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO–Virgo observing run O3a

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais

Journal

The Astrophysical Journal

Published Date

2023/10/1

Fast radio bursts (FRBs) are millisecond duration radio pulses that have been observed out to cosmological distances, several with inferred redshifts greater than unity (Lorimer et al. 2007; Cordes & Chatterjee 2019; Petroff et al. 2019). Although intensely studied for more than a decade, the emission mechanisms and progenitor populations of FRBs are still one of the outstanding questions in astronomy. Some FRBs have been shown to repeat (Amiri et al. 2019a; CHIME/FRB Collaboration et al. 2019; Kumar et al. 2019), and the recent association of an FRB with the Galactic magnetar SGR 1935+ 2154 proves that magnetars can produce FRBs (Bochenek et al. 2020; CHIME/FRB Collaboration et al. 2020). Alternative progenitors and mechanisms to produce nonrepeating FRBs are still credible and have so far not been ruled out (Zhang 2020a). Data currently suggest that both repeating and nonrepeating classes of …

Frequency-dependent squeezed vacuum source for the Advanced Virgo gravitational-wave detector

Authors

Fausto Acernese,M Agathos,A Ain,S Albanesi,C Alléné,A Allocca,A Amato,C Amra,M Andia,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,S Antier,T Apostolatos,EZ Appavuravther,M Arène,N Arnaud,M Assiduo,S Assis de Souza Melo,P Astone,F Aubin,S Babak,F Badaracco,S Bagnasco,J Baird,T Baka,G Ballardin,G Baltus,B Banerjee,P Barneo,F Barone,M Barsuglia,D Barta,A Basti,M Bawaj,M Bazzan,F Beirnaert,M Bejger,V Benedetto,M Berbel,S Bernuzzi,D Bersanetti,A Bertolini,U Bhardwaj,A Bianchi,M Bilicki,S Bini,M Bischi,M Bitossi,M-A Bizouard,F Bobba,M Boër,G Bogaert,G Boileau,M Boldrini,LD Bonavena,R Bondarescu,F Bondu,R Bonnand,V Boschi,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,M Braglia,M Branchesi,M Breschi,T Briant,A Brillet,J Brooks,Giovanni Bruno,F Bucci,O Bulashenko,T Bulik,HJ Bulten,R Buscicchio,D Buskulic,C Buy,G Cabras,R Cabrita,G Cagnoli,E Calloni,M Canepa,G Caneva Santoro,M Cannavacciuolo,E Capocasa,G Carapella,F Carbognani,M Carpinelli,G Carullo,J Casanueva Diaz,Claudio Casentini,S Caudill,R Cavalieri,G Cella,P Cerdá-Durán,E Cesarini,W Chaibi,P Chanial,E Chassande-Mottin,S Chaty,P Chessa,F Chiadini,G Chiarini,R Chierici,A Chincarini,ML Chiofalo,A Chiummo,N Christensen,S Chua,G Ciani,P Ciecielag,M Cieślar,M Cifaldi,RICCARDO Ciolfi,S Clesse,F Cleva,E Coccia,E Codazzo,P-F Cohadon,A Colombo,M Colpi,L Conti,I Cordero-Carrión,S Corezzi,S Cortese,J-P Coulon,J-F Coupechoux,M Croquette,JR Cudell,E Cuoco,M Curyło,P Dabadie,T Dal Canton,S Dall’Osso,G Dálya,B D’angelo,G Dangoisse,S Danilishin,S D’antonio,V Dattilo,M Davier,J Degallaix,M De Laurentis,S Deléglise,F De Lillo,D Dell’Aquila,W Del Pozzo

Journal

Physical review letters

Published Date

2023/7/25

In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced …

The Advanced Virgo+ status

Authors

F Acernese,M Agathos,A Ain,S Albanesi,C Alléné,A Allocca,A Amato,M Andia,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,S Antier,T Apostolatos,EZ Appavuravther,M Arène,N Arnaud,M Assiduo,S Assis de Souza Melo,P Astone,F Aubin,S Babak,F Badaracco,S Bagnasco,J Baird,T Baka,G Ballardin,G Baltus,B Banerjee,P Barneo,F Barone,M Barsuglia,D Barta,A Basti,M Bawaj,M Bazzan,Freija Beirnaert,M Bejger,V Benedetto,M Berbel,S Bernuzzi,D Bersanetti,A Bertolini,U Bhardwaj,A Bianchi,M Bilicki,S Bini,M Bischi,M Bitossi,MA Bizouard,F Bobba,M Boër,G Bogaert,G Boileau,M Boldrini,LD Bonavena,R Bondarescu,F Bondu,R Bonnand,V Boschi,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,M Braglia,M Branchesi,M Breschi,T Briant,A Brillet,J Brooks,Giovanni Bruno,F Bucci,O Bulashenko,T Bulik,HJ Bulten,R Buscicchio,D Buskulic,C Buy,G Cabras,R Cabrita,G Cagnoli,E Calloni,M Canepa,G Caneva,M Cannavacciuolo,E Capocasa,G Carapella,F Carbognani,M Carpinelli,G Carullo,J Casanueva Diaz,Claudio Casentini,S Caudill,R Cavalieri,G Cella,P Cerdá-Durán,E Cesarini,W Chaibi,P Chanial,E Chassande-Mottin,S Chaty,P Chessa,F Chiadini,G Chiarini,R Chierici,A Chincarini,ML Chiofalo,A Chiummo,N Christensen,G Ciani,P Ciecielag,M Cieślar,M Cifaldi,RICCARDO Ciolfi,S Clesse,F Cleva,E Coccia,E Codazzo,PF Cohadon,A Colombo,M Colpi,L Conti,I Cordero-Carrión,S Corezzi,S Cortese,JP Coulon,JF Coupechoux,M Croquette,JR Cudell,E Cuoco,M Curyło,P Dabadie,T Dal Canton,S Dall’Osso,Gergely Dálya,B D’angelo,S Danilishin,S D’antonio,V Dattilo,M Davier,J Degallaix,M De Laurentis,S Deléglise,F De Lillo,D Dell’Aquila,W Del Pozzo,F De Matteis,A Depasse,R De Pietri

Journal

Journal of Physics: Conference Series

Published Date

2023/2/1

The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4).

Virgo detector characterization and data quality: tools

Authors

F Acernese,M Agathos,A Ain,S Albanesi,A Allocca,A Amato,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,S Antier,T Apostolatos,EZ Appavuravther,M Arène,N Arnaud,M Assiduo,S Assis de Souza Melo,P Astone,F Aubin,S Babak,F Badaracco,MKM Bader,S Bagnasco,J Baird,T Baka,G Ballardin,G Baltus,B Banerjee,C Barbieri,P Barneo,F Barone,M Barsuglia,D Barta,A Basti,M Bawaj,M Bazzan,Freija Beirnaert,M Bejger,I Belahcene,V Benedetto,M Berbel,S Bernuzzi,D Bersanetti,A Bertolini,U Bhardwaj,A Bianchi,S Bini,M Bischi,M Bitossi,MA Bizouard,F Bobba,M Boër,G Bogaert,M Boldrini,LD Bonavena,F Bondu,R Bonnand,BA Boom,V Boschi,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,M Branchesi,M Breschi,T Briant,A Brillet,J Brooks,Giovanni Bruno,F Bucci,Tomasz Bulik,HJ Bulten,D Buskulic,C Buy,GS Cabourn Davies,G Cabras,R Cabrita,G Cagnoli,E Calloni,M Canepa,S Canevarolo,M Cannavacciuolo,E Capocasa,G Carapella,F Carbognani,M Carpinelli,G Carullo,J Casanueva Diaz,Claudio Casentini,S Caudill,F Cavalier,R Cavalieri,G Cella,P Cerdá-Durán,E Cesarini,W Chaibi,P Chanial,E Chassande-Mottin,S Chaty,F Chiadini,G Chiarini,R Chierici,A Chincarini,ML Chiofalo,A Chiummo,S Choudhary,N Christensen,G Ciani,P Ciecielag,M Cieślar,M Cifaldi,RICCARDO Ciolfi,F Cipriano,S Clesse,F Cleva,E Coccia,E Codazzo,PF Cohadon,DE Cohen,A Colombo,M Colpi,L Conti,I Cordero-Carrión,S Corezzi,D Corre,S Cortese,JP Coulon,M Croquette,JR Cudell,E Cuoco,Małgorzata Curyło,P Dabadie,T Dal Canton,S Dall’Osso,Gergely Dálya,B D’Angelo,S Danilishin,S D’Antonio,V Dattilo,M Davier,D Davis,J Degallaix,M De Laurentis,S Deléglise,F De Lillo,D Dell’Aquila,W Del Pozzo,F De Matteis,A Depasse

Published Date

2023/8/14

Detector characterization and data quality studies—collectively referred to as DetChar activities in this article—are paramount to the scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA global network of ground-based gravitational-wave (GW) detectors. They take place during each phase of the operation of the instruments (upgrade, tuning and optimization, data taking), are required at all steps of the dataflow (from data acquisition to the final list of GW events) and operate at various latencies (from near real-time to vet the public alerts to offline analyses). This work requires a wide set of tools which have been developed over the years to fulfill the requirements of the various DetChar studies: data access and bookkeeping; global monitoring of the instruments and of the different steps of the data processing; studies of the global properties of the noise at the detector outputs; identification and …

Advanced Virgo plus: future perspectives

Authors

Fausto Acernese,M Agathos,A Ain,S Albanesi,C Alléné,A Allocca,A Amato,M Andia,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,S Antier,T Apostolatos,EZ Appavuravther,M Arène,N Arnaud,M Assiduo,S Assis de Souza Melo,P Astone,F Aubin,S Babak,F Badaracco,S Bagnasco,J Baird,T Baka,G Ballardin,G Baltus,B Banerjee,P Barneo,F Barone,M Barsuglia,D Barta,A Basti,M Bawaj,M Bazzan,F Beirnaert,M Bejger,V Benedetto,M Berbel,S Bernuzzi,D Bersanetti,A Bertolini,U Bhardwaj,A Bianchi,M Bilicki,S Bini,M Bischi,M Bitossi,MA Bizouard,F Bobba,M Boër,G Bogaert,G Boileau,M Boldrini,LD Bonavena,R Bondarescu,F Bondu,R Bonnand,V Boschi,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,M Braglia,M Branchesi,M Breschi,T Briant,A Brillet,J Brooks,G Bruno,F Bucci,O Bulashenko,T Bulik,HJ Bulten,R Buscicchio,D Buskulic,C Buy,G Cabras,R Cabrita,G Cagnoli,E Calloni,M Canepa,G Caneva,M Cannavacciuolo,E Capocasa,G Carapella,F Carbognani,M Carpinelli,G Carullo,J Casanueva Diaz,C Casentini,S Caudill,R Cavalieri,G Cella,P Cerdá-Durán,E Cesarini,W Chaibi,P Chanial,E Chassande-Mottin,S Chaty,P Chessa,F Chiadini,G Chiarini,R Chierici,A Chincarini,ML Chiofalo,A Chiummo,N Christensen,G Ciani,P Ciecielag,M Cieślar,M Cifaldi,R Ciolfi,S Clesse,F Cleva,E Coccia,E Codazzo,PF Cohadon,A Colombo,M Colpi,L Conti,I Cordero-Carrión,S Corezzi,S Cortese,JP Coulon,JF Coupechoux,M Croquette,JR Cudell,E Cuoco,M Curyło,P Dabadie,T Dal Canton,S Dall’Osso,G Dálya,B D’angelo,S Danilishin,S D’antonio,V Dattilo,M Davier,J Degallaix,M De Laurentis,S Deléglise,F De Lillo,D Dell’Aquila,W Del Pozzo,F De Matteis,A Depasse,R De Pietri

Journal

Journal of Physics: Conference Series

Published Date

2023

While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector’s reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar-CRIS 2022 held in September 2022 in Napoli.

Constraints on the cosmic expansion history from GWTC-3

Authors

R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andric,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Assis De Souza Melo,SM Aston,P Astone,F Aubin,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,R Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,G Billingsley,M Bilicki,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,MA Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode

Journal

Astrophysical Journal

Published Date

2023/6/1

The discovery of a gravitational wave (GW) signal from a binary neutron star (BNS) merger (Abbott et al. 2017a) and the kilonova emission from its remnant (Coulter et al. 2017; Abbott et al. 2017b) provided the first GW standard siren measurement of the cosmic expansion history (Abbott et al. 2017c). As pointed out by Schutz (1986), the GW signal from a compact binary coalescence directly measures the luminosity distance to the source without any additional distance calibrator, earning these sources the name “standard sirens”(Holz & Hughes 2005). Measuring the cosmic expansion as a function of the cosmological redshift is one of the key avenues with which to explore the constituents of the universe, along with the other canonical probes such as the cosmic microwave background (CMB; Spergel et al. 2003, 2007; Komatsu et al. 2011; Ade et al. 2014, 2016; Aghanim et al. 2020), baryon acoustic oscillations …

Virgo detector characterization and data quality: results from the O3 run

Authors

F Acernese,M Agathos,A Ain,S Albanesi,A Allocca,A Amato,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,S Antier,T Apostolatos,EZ Appavuravther,M Arène,N Arnaud,M Assiduo,S Assis de Souza Melo,P Astone,F Aubin,S Babak,F Badaracco,MKM Bader,S Bagnasco,J Baird,T Baka,G Ballardin,G Baltus,B Banerjee,C Barbieri,P Barneo,F Barone,M Barsuglia,D Barta,A Basti,M Bawaj,M Bazzan,Freija Beirnaert,M Bejger,I Belahcene,V Benedetto,M Berbel,S Bernuzzi,D Bersanetti,A Bertolini,U Bhardwaj,A Bianchi,S Bini,M Bischi,M Bitossi,MA Bizouard,F Bobba,M Boër,G Bogaert,M Boldrini,LD Bonavena,F Bondu,R Bonnand,BA Boom,V Boschi,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,M Branchesi,M Breschi,T Briant,A Brillet,J Brooks,Giovanni Bruno,F Bucci,T Bulik,HJ Bulten,D Buskulic,C Buy,GS Cabourn Davies,G Cabras,R Cabrita,G Cagnoli,E Calloni,M Canepa,S Canevarolo,M Cannavacciuolo,E Capocasa,G Carapella,F Carbognani,M Carpinelli,G Carullo,J Casanueva Diaz,Claudio Casentini,S Caudill,F Cavalier,R Cavalieri,G Cella,P Cerdá-Durán,E Cesarini,W Chaibi,P Chanial,E Chassande-Mottin,S Chaty,F Chiadini,G Chiarini,R Chierici,A Chincarini,ML Chiofalo,A Chiummo,S Choudhary,N Christensen,G Ciani,P Ciecielag,M Cieślar,M Cifaldi,RICCARDO Ciolfi,F Cipriano,S Clesse,F Cleva,E Coccia,E Codazzo,PF Cohadon,DE Cohen,A Colombo,M Colpi,L Conti,I Cordero-Carrión,S Corezzi,D Corre,S Cortese,JP Coulon,M Croquette,JR Cudell,E Cuoco,M Curyło,P Dabadie,T Dal Canton,S Dall’Osso,Gergely Dálya,B D’Angelo,S Danilishin,S D’Antonio,V Dattilo,M Davier,D Davis,J Degallaix,M De Laurentis,S Deléglise,F De Lillo,D Dell’Aquila,W Del Pozzo,F De Matteis,A Depasse

Journal

Classical and Quantum Gravity

Published Date

2023/8/14

The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected GW signals in the past few years, alongside the two Advanced LIGO instruments. First during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817), and then during the full Observation Run 3 (O3): an 11 months data taking period, between April 2019 and March 2020, that led to the addition of 79 events to the catalog of transient GW sources maintained by LIGO, Virgo and now KAGRA. These discoveries and the manifold exploitation of the detected waveforms benefit from an accurate characterization of the quality of the data, such as continuous study and monitoring of the detector noise sources. These activities, collectively named detector characterization and data quality or DetChar, span the whole workflow of the Virgo data …

Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

Authors

R Abbott,H Abe,F Acernese,K Ackley,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,C Alléné,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,H Asada,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,S Babak,F Badaracco,C Badger,S Bae,Y Bae,S Bagnasco,Y Bai,JG Baier,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,M Bilicki,G Billingsley,S Bini,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boër,G Bogaert,M Boldrini,GN Bolingbroke,LD Bonavena,R Bondarescu,F Bondu,E Bonilla,R Bonnand,P Booker

Journal

arXiv preprint arXiv:2304.08393

Published Date

2023/4/17

Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.

GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run

Authors

Richard Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,Kazuhiro Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Akcay,T Akutsu,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M BenYaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov

Journal

Physical Review X

Published Date

2023/12/4

The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶ 00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶ 00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin p astro> 0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with p astro> 0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star–black-hole binaries, and we identify …

arXiv: Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

Authors

AG Abac,ML Chiofalo,G Nieradka,R Pegna,C North,R Bhandare,G Pierra,A Amato,JG Baier,D Chen,B Haskell,F Robinet,M Fyffe,M Arogeti,N Raza,DD White,E Payne,M Wright,K Johansmeyer,K Hayama,P-F Cohadon,CG Collette,D Sellers,S Hoang,V Sipala,H Heitmann,T O'Hanlon,B Edelman,G McCarrol,GS Bonilla,T Harder,TA Clarke,YT Huang,J Junker,M Hennig,N Hirata,J Portell,R McCarthy,M Weinert,Y-C Yang,R Poulton,G Ballardin,D Bankar,A Bianchi,M Montani,R Goetz,CD Panzer,X Chen,R Takahashi,J Lange,K Schouteden,A Sasli,LM Modafferi,ME Zucker,J O'Dell,D Lumaca,AP Spencer,M Millhouse,M Norman,MJ Szczepańczyk,S-C Hsu,ST Countryman,C Chatterjee,AL James,E Chassande-Mottin,M Tacca,FJ Raab,TR Saravanan,VP Mitrofanov,S Bernuzzi,C Adamcewicz,L Conti,J Golomb,X Li,ERG von Reis,J Woehler,G Bogaert,F Fidecaro,B Shen,JM Ezquiaga,V Juste,S Sachdev,JD Bentley,YA Kas-danouche,R Sturani,M Toscani,K Takatani,D Beniwal,U Dupletsa,F Glotin,Y Lee,R Bhatt,A Couineaux,M Wade,N Kanda,J Novak,S Bini,I Ferrante,RA Alfaidi,N Johny,LE Sanchez,J Heinze,J Zhang,M Kinley-Hanlon,M Pegoraro,A Van de Walle,T Sainrat,NN Janthalur,A Trovato,A Romero,K Tomita,DE McClelland,B Fornal,M Heurs,AM Gretarsson,ND Koliadko,A Chincarini,BB Lane,AE Romano,M Martinez,V Fafone,FY Khalili,F Linde,C Messick,A Heffernan,J Gargiulo,V JaberianHamedan,SW Reid,D Moraru,D Pathak,M Iwaya,G Grignani,T Karydas,K AultONeal,SA Pai,IM Pinto,KW Chung,C Palomba,J Tissino,T Klinger,Ll M Mir,K Kwan,JK Katsuren,TP Lott,C Posnansky,S Di Pace,F Badaracco,NA Johnson,VA Martinez,A Ain

Published Date

2023/8/7

Despite the growing number of candidates and the insight they have provided, the astrophysical sites and processes that produce the observed merging binaries remain uncertain. Multiple viable scenarios exist. The binary black holes could have formed in an isolated stellar binary (eg, Bethe & Brown 1998; Dominik et al. 2015; Inayoshi et al. 2017; Marchant et al. 2016; de Mink & Mandel 2016; Gallegos-Garcia et al. 2021), via dynamical interactions in dense stellar clusters (eg, Portegies Zwart & McMillan 2000; Banerjee et al. 2010; Ziosi et al. 2014; Morscher et al. 2015; Mapelli 2016; Rodriguez et al. 2016a; Askar et al. 2017) or triple systems (eg, Antonini et al. 2017; Martinez et al. 2020; Vigna-Gómez et al. 2021), or via gas capture in the disks of active galactic nuclei (AGN; eg, McKernan et al. 2012; Bartos et al. 2017; Fragione et al. 2019; Tagawa et al. 2020).

Population of merging compact binaries inferred using gravitational waves through GWTC-3

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,PF De Alarcón,S Akcay,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,F Antonini,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,Stanislav Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,François Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose

Journal

Physical Review X

Published Date

2023/3/29

We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc− 3 yr− 1 and the neutron star–black hole merger rate to be between 7.8 and 140 Gpc− 3 yr− 1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc− 3 yr− 1 at a fiducial redshift (z= 0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional …

Exact Riemann solver for non-convex relativistic hydrodynamics

Authors

M Berbel,S Serna,A Marquina

Journal

Journal of Fluid Mechanics

Published Date

2023/11

We present the general analytical solution of the Riemann problem (decay of a jump discontinuity) for non-convex relativistic hydrodynamics. In convex dynamics, an elementary nonlinear wave, i.e. a rarefaction or a shock, originates at the discontinuity and travels towards one of the initial states. Between the left and right waves, an equilibrium state appears represented by a contact discontinuity. The exact solution to the Riemann problem in convex relativistic hydrodynamics was first addressed by Martí & Müller (J. Fluid Mech., vol. 258, 1994, pp. 317–333). In non-convex dynamics, two sequences of elementary nonlinear waves move towards the left and right initial states. Solving the Riemann problem involves determining the types of wave developing and the equilibrium state where they coincide. The procedure consists of constructing the wave curves associated with the nonlinear waves in the pressure …

Search for eccentric black hole coalescences during the third observing run of LIGO and virgo

Authors

AG Abac,R Abbott,H Abe,F Acernese,K Ackley,C Adamcewicz,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,I Aguilar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Al-Jodah,C Alléné,A Allocca,M Almualla,PA Altin,S Álvarez-López,A Amato,L Amez-Droz,A Amorosi,S Anand,A Ananyeva,R Andersen,SB Anderson,WG Anderson,M Andia,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,JM Antelis,S Antier,M Aoumi,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,N Aritomi,F Armato,N Arnaud,M Arogeti,SM Aronson,KG Arun,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,S Babak,A Badalyan,F Badaracco,C Badger,S Bae,S Bagnasco,Y Bai,JG Baier,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,G Baltus,S Banagiri,B Banerjee,D Bankar,P Baral,JC Barayoga,J Barber,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,SD Barthelmy,MA Barton,I Bartos,S Basak,A Basalaev,R Bassiri,A Basti,M Bawaj,P Baxi,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M Ben Yaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,N Bevins,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,M Bilicki,G Billingsley,A Binetti,S Bini,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,M Bitossi,M-A Bizouard,JK Blackburn

Journal

arXiv preprint arXiv:2308.03822

Published Date

2023/8/7

Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass ) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities at Gpc yr at 90\% confidence level.

Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

Authors

R Abbott,H Abe,F Acernese,K Ackley,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Al-Jodah,C Alléné,A Allocca,M Almualla,PA Altin,A Amato,L Amez-Droz,A Amorosi,S Anand,A Ananyeva,R Andersen,SB Anderson,WG Anderson,M Andia,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,JM Antelis,S Antier,M Aoumi,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,G Ashton,Y Aso,M Assiduo,Sad Melo,SM Aston,P Astone,F Aubin,K AultONeal,S Babak,A Badalyan,F Badaracco,C Badger,S Bae,S Bagnasco,Y Bai,JG Baier,L Baiotti,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,G Baltus,S Banagiri,B Banerjee,D Bankar,P Baral,JC Barayoga,J Barber,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,SD Barthelmy,MA Barton,I Bartos,S Basak,A Basalaev,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,Freija Beirnaert,M Bejger,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M Ben Yaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,N Bevins,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,M Bilicki,G Billingsley,S Bini,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair

Journal

arXiv preprint arXiv:2302.03676

Published Date

2023/2/7

The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.

Bifurcation theory captures band formation in the Vicsek model of flock formation

Authors

C Trenado,LL Bonilla,A Marquina

Journal

arXiv preprint arXiv:2203.14238

Published Date

2022/3/27

Collective behavior occurs ubiquitously in nature and it plays a key role in bacterial colonies, mammalian cells or flocks of birds. Here, we examine the average density and velocity of self-propelled particles, which are described by a system of partial differential equations near the flocking transition of the Vicsek model. This agent-based model illustrates the trend towards flock formation of animals that align their velocities to an average of those of their neighbors. Near the flocking transition, particle density and velocity obey partial differential equations that include a parameter measuring the distance to the bifurcation point. We have obtained analytically the Riemann invariants in one and two spatial dimensions for the hyperbolic () and parabolic () system and, under periodic initial-boundary value conditions, we show that the solutions include wave trains. Additionally, we have found wave trains having oscillation frequencies that agree with those predicted by a linearization approximation and that may propagate at angles depending on the initial condition. The wave amplitudes increase with time for the hyperbolic system but are stabilized to finite values for the parabolic system. To integrate the partial differential equations, we design a basic numerical scheme which is first order in time and space. To mitigate numerical dissipation and ensure good resolution of the wave features, we also use a high order accurate WENO5 reconstruction procedure in space and a third order accurate Runge-Kutta scheme in time. Comparisons with direct simulations of the Vicsek model confirm these predictions.

Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run

Authors

R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boër,G Bogaert,M Boldrini,GN Bolingbroke

Journal

arXiv preprint arXiv:2210.10931

Published Date

2022/10/20

Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ( 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo and KAGRA's third observation run. These 13 bursts come from two magnetars, SGR 19352154 and Swift J1818.01607. We also include three other electromagnetic burst events detected by Fermi GBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper bounds on the root-sum-square of the integrated gravitational-wave strain that reach at 100 Hz for the short-duration search and at Hz for the long-duration search, given a detection efficiency of 50%. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to . Using the estimated distance to each magnetar, we derive upper bounds on the emitted gravitational-wave energy of erg ( erg) for SGR 19352154 and erg ( erg) for Swift J1818.01607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 19352154 with available fluence …

See List of Professors in Antonio Marquina University(Universidad de Valencia)

Antonio Marquina FAQs

What is Antonio Marquina's h-index at Universidad de Valencia?

The h-index of Antonio Marquina has been 65 since 2020 and 75 in total.

What are Antonio Marquina's top articles?

The articles with the titles of

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Ultralight vector dark matter search using data from the KAGRA O3GK run

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO–Virgo observing run O3a

Frequency-dependent squeezed vacuum source for the Advanced Virgo gravitational-wave detector

The Advanced Virgo+ status

Virgo detector characterization and data quality: tools

...

are the top articles of Antonio Marquina at Universidad de Valencia.

What are Antonio Marquina's research interests?

The research interests of Antonio Marquina are: Computational Fluid Dynamics, Variational models for signal processing, Computational methods for data analysis

What is Antonio Marquina's total number of citations?

Antonio Marquina has 52,527 citations in total.

What are the co-authors of Antonio Marquina?

The co-authors of Antonio Marquina are T F Chan, KATHERINE L NARR, Ronald Fedkiw, Alejandro Torres, Miguel Ángel Aloy, Jose Antonio Font.

    Co-Authors

    H-index: 106
    T F Chan

    T F Chan

    King Abdullah University of Science and Technology

    H-index: 81
    KATHERINE L NARR

    KATHERINE L NARR

    University of California, Los Angeles

    H-index: 71
    Ronald Fedkiw

    Ronald Fedkiw

    Stanford University

    H-index: 64
    Alejandro Torres

    Alejandro Torres

    Universidad de Valencia

    H-index: 63
    Miguel Ángel Aloy

    Miguel Ángel Aloy

    Universidad de Valencia

    H-index: 62
    Jose Antonio Font

    Jose Antonio Font

    Universidad de Valencia

    academic-engine

    Useful Links