Francesco Chiadini

Francesco Chiadini

Università degli Studi di Salerno

H-index: 50

Europe-Italy

About Francesco Chiadini

Francesco Chiadini, With an exceptional h-index of 50 and a recent h-index of 43 (since 2020), a distinguished researcher at Università degli Studi di Salerno, specializes in the field of Electromagnetics - Optics.

His recent articles reflect a diverse array of research interests and contributions to the field:

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

Population of merging compact binaries inferred using gravitational waves through GWTC-3

GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run

Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog

Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run

Population properties of compact objects from the second LIGO–Virgo gravitational-wave transient catalog

A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo

Francesco Chiadini Information

University

Università degli Studi di Salerno

Position

Assistant Professor of Electromagnetics - ITALY

Citations(all)

15520

Citations(since 2020)

13391

Cited By

4242

hIndex(all)

50

hIndex(since 2020)

43

i10Index(all)

95

i10Index(since 2020)

70

Email

University Profile Page

Università degli Studi di Salerno

Francesco Chiadini Skills & Research Interests

Electromagnetics - Optics

Top articles of Francesco Chiadini

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,Y Asali,G Ashton,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,AM Baer,S Bagnasco,Y Bai,J Baird,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,A Branch,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,A Brillet,M Brinkmann

Journal

Physical Review D

Published Date

2024/1/5

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

Population of merging compact binaries inferred using gravitational waves through GWTC-3

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,PF De Alarcón,S Akcay,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,F Antonini,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,Stanislav Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,François Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose

Journal

Physical Review X

Published Date

2023/3/29

We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc− 3 yr− 1 and the neutron star–black hole merger rate to be between 7.8 and 140 Gpc− 3 yr− 1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc− 3 yr− 1 at a fiducial redshift (z= 0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional …

GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run

Authors

Richard Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,Kazuhiro Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Akcay,T Akutsu,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M BenYaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov

Journal

Physical Review X

Published Date

2023/12/4

The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶ 00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶ 00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin p astro> 0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with p astro> 0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star–black-hole binaries, and we identify …

Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog

Authors

Robert Abbott,TD Abbott,S Abraham,Fausto Acernese,K Ackley,A Adams,C Adams,Rana X Adhikari,VB Adya,C Affeldt,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,S Akcay,G Allen,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arene,N Arnaud,SM Aronson,KG Arun,Y Asali,STEFANO Ascenzi,G Ashton,SM Aston,P Astone,F Aubin,P Aufmuth,K AultONeal,C Austin,V Avendano,S Babak,F Badaracco,MKM Bader,S Bae,AM Baer,S Bagnasco,J Baird,M Ball,G Ballardin,SW Ballmer,A Bals,A Balsamo,G Baltus,S Banagiri,D Bankar,RS Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,S Barnum,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,D Beniwal,MG Benjamin,R Benkel,TF Bennett,JD Bentley,F Bergamin,BK Berger,G Bergmann,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,R Bhandare,AV Bhandari,D Bhattacharjee,J Bidler,IA Bilenko,G Billingsley,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,M Bitossi,M-A Bizouard,JK Blackburn,J Blackman,CD Blair,DG Blair,RM Blair,O Blanch,F Bobba,N Bode,M Boer,Y Boetzel,G Bogaert,M Boldrini,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,S Borhanian,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,F Brighenti,A Brillet

Journal

Physical review D

Published Date

2021/6/15

Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low-and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of∼ 2; we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of∼ 2.6 and bound the mass of the graviton to m g≤ 1.76× 10− 23 eV/c 2 with 90% credibility. We also analyze the …

Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

Authors

Rich Abbott,Thomas D Abbott,Sheelu Abraham,Fausto Acernese,Kendall Ackley,Carl Adams,Rana X Adhikari,Vaishali B Adya,Christoph Affeldt,Michalis Agathos,Kazuhiro Agatsuma,Nancy Aggarwal,Odylio D Aguiar,Amit Aich,Lorenzo Aiello,Anirban Ain,Ajith Parameswaran,Gabrielle Allen,Annalisa Allocca,Paul A Altin,Alex Amato,Shreya Anand,Alena Ananyeva,Stuart B Anderson,Warren G Anderson,Svetoslava V Angelova,Stefano Ansoldi,Sarah Antier,Stephen Appert,Koji Arai,Melody C Araya,Joseph S Areeda,Marc Arène,Nicolas Arnaud,Scott M Aronson,Kg G Arun,Stefano Ascenzi,Gregory Ashton,Stuart M Aston,Pia Astone,Florian Aubin,Peter Aufmuth,Kellie AultONeal,Corey Austin,Valerie Avendano,Stanislav Babak,Philippe Bacon,Francesca Badaracco,Maria KM Bader,Sangwook Bae,Anne M Baer,Jonathon Baird,Francesca Baldaccini,Giulio Ballardin,Stefan W Ballmer,Anna-marie Bals,Alexander Balsamo,Gregory Baltus,Sharan Banagiri,Deepak Bankar,Rameshwar S Bankar,Juan C Barayoga,Claudio Barbieri,Barry C Barish,David Barker,Kevin Barkett,Pablo Barneo,Fabrizio Barone,Bryan Barr,Lisa Barsotti,Matteo Barsuglia,Daniel Barta,Jeffrey Bartlett,Imre Bartos,Riccardo Bassiri,Andrea Basti,Mateusz Bawaj,Joseph C Bayley,Marco Bazzan,Bence Bécsy,Michal Bejger,Imene Belahcene,Angus S Bell,Deeksha Beniwal,Michael G Benjamin,Joe D Bentley,Fabio Bergamin,Beverly K Berger,Gerald Bergmann,Sebastiano Bernuzzi,Christopher PL Berry,Diego Bersanetti,Alessandro Bertolini,Joseph Betzwieser,Rohan Bhandare,Ankit V Bhandari,Jeffrey Bidler,Edward Biggs,Igor A Bilenko,Garilynn Billingsley,Ross Birney,Ofek Birnholtz,Sebastien Biscans,Matteo Bischi,Sylvia Biscoveanu,Aparna Bisht,Guldauren Bissenbayeva,Massimiliano Bitossi,Marieanne A Bizouard,Kent K Blackburn,Jonathan Blackman,Carl D Blair,David G Blair,Ryan M Blair,Fabrizio Bobba,Nina Bode,Michel Boer,Yannick Boetzel,Gilles Bogaert,Francois Bondu,Edgard Bonilla,Romain Bonnand,Phillip Booker,Boris A Boom,Rolf Bork,Valerio Boschi,Sukanta Bose,Vladimir Bossilkov,Joel Bosveld,Yann Bouffanais,Antonella Bozzi,Carlo Bradaschia,Patrick R Brady,Alyssa Bramley,Marica Branchesi,Jim E Brau,Matteo Breschi,Tristan Briant,Joseph H Briggs,Francesco Brighenti,Alain Brillet,Marc Brinkmann,Patrick Brockill,Aidan F Brooks,Jonathan Brooks,Daniel D Brown,Sharon Brunett,Giacomo Bruno,Robert Bruntz,Aaron Buikema

Journal

SoftwareX

Published Date

2021/1/1

Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software.

Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run

Authors

Ryan Abbott,TD Abbott,S Abraham,Fausto Acernese,K Ackley,A Adams,C Adams,Rana X Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,T Akutsu,KM Aleman,G Allen,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,Koya Arai,Koji Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,SM Aronson,H Asada,Y Asali,G Ashton,Y Aso,SM Aston,P Astone,F Aubin,P Aufmuth,K Aultoneal,C Austin,S Babak,F Badaracco,MKM Bader,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,M Bals,A Balsamo,G Baltus,S Banagiri,D Bankar,RS Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,S Barnum,F Barone,Bryan Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,D Bersanetti,A Bertolini,J Betzwieser,R Bhandare,AV Bhandari,D Bhattacharjee,S Bhaumik,J Bidler,IA Bilenko,G Billingsley,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,J Blackman,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,François Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia

Journal

Physical Review D

Published Date

2021/7/23

We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO’s and Advanced Virgo’s third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results of the search are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density Ω GW≤ 5.8× 10− 9 at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20–76.6 Hz; Ω GW (f)≤ 3.4× 10− 9 at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20–90.6 Hz; and Ω GW (f)≤ 3.9× 10− 10 at …

Population properties of compact objects from the second LIGO–Virgo gravitational-wave transient catalog

Authors

Rich Abbott,TD Abbott,S Abraham,Fausto Acernese,K Ackley,A Adams,C Adams,RX Adhikari,VB Adya,Christoph Affeldt,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,G Allen,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,Y Asali,STEFANO Ascenzi,G Ashton,SM Aston,P Astone,F Aubin,P Aufmuth,K Aultoneal,C Austin,V Avendano,S Babak,F Badaracco,MKM Bader,S Bae,AM Baer,S Bagnasco,J Baird,M Ball,G Ballardin,SW Ballmer,A Bals,A Balsamo,G Baltus,S Banagiri,D Bankar,RS Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,S Barnum,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,F Bergamin,BK Berger,G Bergmann,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,R Bhandare,AV Bhandari,D Bhattacharjee,J Bidler,IA Bilenko,G Billingsley,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,M Bitossi,M-A Bizouard,JK Blackburn,J Blackman,CD Blair,DG Blair,RM Blair,O Blanch,F Bobba,N Bode,M Boer,Y Boetzel,G Bogaert,M Boldrini,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,F Brighenti,A Brillet,M Brinkmann,P Brockill,AF Brooks,J Brooks

Journal

The Astrophysical journal letters

Published Date

2021/5/19

We analyze the population properties of black holes (BHs) and neutron stars (NSs) in compact binary systems using data from the LIGO–Virgo Gravitational-Wave Transient Catalog 2 (GWTC-2; Abbott et al. 2020c). The GWTC-2 catalog combines observations from the first two observing runs (O1 and O2; Abbott et al. 2019b) and the first half of the third observing run (O3a; Abbott et al. 2020c) of the Advanced LIGO (Aasi et al. 2015) and Advanced Virgo (Acernese et al. 2015) gravitational-wave observatories. With the 39 additional candidates from O3a, we have more than quadrupled the number of events from O1 and O2, published in the first LIGO–Virgo Transient Catalog (GWTC-1; Abbott et al. 2019b). Counting only events with a false-alarm rate (FAR) of<-1 yr 1 (as opposed to the less conservative FAR threshold of<-2 yr 1 in GWTC-2), the new combined catalog includes two binary NS (BNS) events, 44 …

A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo

Authors

BP Abbott,Robert Abbott,TD Abbott,S Abraham,Fausto Acernese,K Ackley,C Adams,RX Adhikari,VB Adya,Christoph Affeldt,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,G Allen,A Allocca,MA Aloy,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,SV Angelova,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,STEFANO Ascenzi,G Ashton,SM Aston,P Astone,F Aubin,P Aufmuth,K AultONeal,C Austin,V Avendano,A Avila-Alvarez,S Babak,P Bacon,F Badaracco,MKM Bader,S Bae,J Baird,PT Baker,F Baldaccini,G Ballardin,SW Ballmer,A Bals,S Banagiri,JC Barayoga,C Barbieri,SE Barclay,BC Barish,D Barker,K Barkett,S Barnum,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,B Bécsy,M Bejger,I Belahcene,AS Bell,D Beniwal,MG Benjamin,BK Berger,G Bergmann,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,R Bhandare,J Bidler,E Biggs,IA Bilenko,SA Bilgili,G Billingsley,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,M Bitossi,MA Bizouard,JK Blackburn,J Blackman,CD Blair,DG Blair,RM Blair,S Bloemen,F Bobba,N Bode,M Boer,Y Boetzel,G Bogaert,F Bondu,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,S Bose,V Bossilkov,J Bosveld,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,F Brighenti,A Brillet,M Brinkmann,P Brockill,AF Brooks,J Brooks,DD Brown,S Brunett,A Buikema,T Bulik,HJ Bulten,A Buonanno,D Buskulic,C Buy,RL Byer,M Cabero

Journal

The Astrophysical Journal

Published Date

2021/3/19

Gravitational waves (GWs) from compact binary coalescences allow for the direct measurement of the luminosity distance to their source. This makes them standard-distance indicators, and in conjunction with an identified host galaxy or a set of possible host galaxies, they can be used as standard sirens to construct a redshift-distance relationship and measure cosmological parameters like the Hubble constant (H0; Schutz 1986; Holz & Hughes 2005; MacLeod & Hogan 2008; Nissanke et al. 2010; Sathyaprakash et al. 2010). The GW signature from the binary neutron star (BNS) merger GW170817, along with its coincident electromagnetic (EM) transient associated with the host galaxy NGC4993, led to a first standard-siren measurement of H0 (Abbott et al. 2017a). This measurement is independent of other state-of-the-art measurements of H0, and in particular, independent of the cosmic distance ladder used to …

GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

Authors

Richard Abbott,TD Abbott,S Abraham,F Acernese,K Ackley,A Adams,C Adams,RX Adhikari,VB Adya,Christoph Affeldt,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,S Akcay,G Allen,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,Y Asali,STEFANO Ascenzi,G Ashton,SM Aston,P Astone,F Aubin,P Aufmuth,K Aultoneal,C Austin,V Avendano,S Babak,F Badaracco,MKM Bader,S Bae,AM Baer,S Bagnasco,J Baird,M Ball,G Ballardin,SW Ballmer,A Bals,A Balsamo,G Baltus,S Banagiri,D Bankar,RS Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,S Barnum,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,F Bergamin,BK Berger,G Bergmann,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,R Bhandare,AV Bhandari,D Bhattacharjee,J Bidler,IA Bilenko,G Billingsley,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,M Bitossi,M-A Bizouard,JK Blackburn,J Blackman,CD Blair,DG Blair,RM Blair,O Blanch,F Bobba,N Bode,M Boer,Y Boetzel,G Bogaert,M Boldrini,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,F Brighenti,A Brillet,M Brinkmann,P Brockill,AF Brooks

Journal

Physical Review X

Published Date

2021/6/9

We report on gravitational-wave discoveries from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. By imposing a false-alarm-rate threshold of two per year in each of the four search pipelines that constitute our search, we present 39 candidate gravitational-wave events. At this threshold, we expect a contamination fraction of less than 10%. Of these, 26 candidate events were reported previously in near-real time through gamma-ray coordinates network notices and circulars; 13 are reported here for the first time. The catalog contains events whose sources are black hole binary mergers up to a redshift of approximately 0.8, as well as events whose components cannot be unambiguously identified as black holes or neutron stars. For the latter group, we are unable to …

GW190425: Observation of a compact binary coalescence with total mass∼ 3.4 M⊙

Authors

BP Abbott,Robert Abbott,TD Abbott,S Abraham,Fausto Acernese,K Ackley,C Adams,RX Adhikari,VB Adya,Christoph Affeldt,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,G Allen,A Allocca,MA Aloy,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,SV Angelova,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,STEFANO Ascenzi,G Ashton,SM Aston,P Astone,F Aubin,P Aufmuth,K Aultoneal,C Austin,V Avendano,A Avila-Alvarez,S Babak,P Bacon,F Badaracco,MKM Bader,S Bae,J Baird,PT Baker,F Baldaccini,G Ballardin,SW Ballmer,A Bals,S Banagiri,JC Barayoga,C Barbieri,SE Barclay,BC Barish,D Barker,K Barkett,S Barnum,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,M Bejger,I Belahcene,AS Bell,D Beniwal,MG Benjamin,BK Berger,G Bergmann,S Bernuzzi,Christopher Philip Luke Berry,D Bersanetti,A Bertolini,J Betzwieser,R Bhandare,J Bidler,E Biggs,IA Bilenko,SA Bilgili,G Billingsley,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,M Bitossi,MA Bizouard,JK Blackburn,J Blackman,CD Blair,DG Blair,RM Blair,S Bloemen,F Bobba,N Bode,M Boer,Y Boetzel,G Bogaert,F Bondu,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,S Bose,V Bossilkov,J Bosveld,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,F Brighenti,A Brillet,M Brinkmann,P Brockill,AF Brooks,J Brooks,DD Brown,S Brunett,A Buikema,T Bulik,HJ Bulten,A Buonanno,D Buskulic,C Buy,RL Byer

Journal

The Astrophysical Journal

Published Date

2020/3/19

The first observation of gravitational waves from the inspiral of a binary neutron star (BNS) 200 system on 2017 August 17 (Abbott et al. 2017b) was a major landmark in multi-messenger astronomy and astrophysics. The gravitational-wave merger was accompanied by a gamma-ray burst (Abbott et al. 2017c; Goldstein et al. 2017; Savchenko et al. 2017); the subsequent world-wide follow-up of the signal by electromagnetic telescopes and satellite observatories identified the host galaxy and observed the kilonova and afterglow emission of the event over a period of hours to months (see, for example, Abbott et al. 2017d and references therein; Villar et al. 2017; Hajela et al. 2019; Troja et al. 2019).

GW190521: A Binary Black Hole Merger with a Total Mass of

Authors

Richard Abbott,TD Abbott,S Abraham,Fausto Acernese,K Ackley,C Adams,RX Adhikari,VB Adya,Christoph Affeldt,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,A Aich,L Aiello,A Ain,P Ajith,S Akcay,G Allen,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,SV Angelova,S Ansoldi,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,Y Asali,STEFANO Ascenzi,G Ashton,SM Aston,P Astone,F Aubin,P Aufmuth,K AultONeal,C Austin,V Avendano,S Babak,P Bacon,F Badaracco,MKM Bader,S Bae,AM Baer,J Baird,F Baldaccini,G Ballardin,SW Ballmer,A Bals,A Balsamo,G Baltus,S Banagiri,D Bankar,RS Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,K Barkett,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,B Bécsy,M Bejger,I Belahcene,AS Bell,D Beniwal,MG Benjamin,JD Bentley,F Bergamin,BK Berger,G Bergmann,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,R Bhandare,AV Bhandari,J Bidler,E Biggs,IA Bilenko,G Billingsley,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,G Bissenbayeva,M Bitossi,MA Bizouard,JK Blackburn,J Blackman,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,Y Boetzel,G Bogaert,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,S Bose,V Bossilkov,J Bosveld,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,F Brighenti,A Brillet,M Brinkmann,P Brockill,AF Brooks,J Brooks,DD Brown,S Brunett,GIOVANNI Bruno

Journal

Physical review letters

Published Date

2020/9/2

On May 21, 2019 at 03: 02: 29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 8 5− 14+ 21 M⊙ and 6 6− 18+ 17 M⊙(90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M⊙. We calculate the mass of the remnant to be 14 2− 16+ 28 M⊙, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3− 2.6+ 2.4 Gpc, corresponding to a redshift of 0.82− 0.34+ 0.28. The inferred …

GW190412: Observation of a binary-black-hole coalescence with asymmetric masses

Authors

R Abbott,TD Abbott,S Abraham,F Acernese,K Ackley,C Adams,Rana X Adhikari,VB Adya,Christoph Affeldt,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,A Aich,L Aiello,A Ain,P Ajith,S Akcay,G Allen,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,SV Angelova,S Ansoldi,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,Y Asali,STEFANO Ascenzi,G Ashton,SM Aston,P Astone,F Aubin,P Aufmuth,K Aultoneal,C Austin,V Avendano,S Babak,P Bacon,F Badaracco,MKM Bader,S Bae,AM Baer,J Baird,F Baldaccini,G Ballardin,SW Ballmer,A Bals,A Balsamo,G Baltus,S Banagiri,D Bankar,RS Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,K Barkett,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,B Bécsy,M Bejger,I Belahcene,AS Bell,D Beniwal,MG Benjamin,R Benkel,JD Bentley,F Bergamin,BK Berger,G Bergmann,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,R Bhandare,AV Bhandari,J Bidler,E Biggs,IA Bilenko,G Billingsley,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,G Bissenbayeva,M Bitossi,MA Bizouard,JK Blackburn,J Blackman,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,Y Boetzel,G Bogaert,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,S Bose,V Bossilkov,J Bosveld,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,F Brighenti,A Brillet,M Brinkmann,R Brito,P Brockill,AF Brooks,J Brooks,DD Brown

Journal

Physical Review D

Published Date

2020/8/24

We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO’s and Virgo’s third observing run. The signal was recorded on April 12, 2019 at 05∶ 30∶ 44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: a∼ 30 M⊙ black hole merged with a∼ 8 M⊙ black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einstein’s general theory of relativity. While the …

See List of Professors in Francesco Chiadini University(Università degli Studi di Salerno)

Francesco Chiadini FAQs

What is Francesco Chiadini's h-index at Università degli Studi di Salerno?

The h-index of Francesco Chiadini has been 43 since 2020 and 50 in total.

What are Francesco Chiadini's top articles?

The articles with the titles of

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

Population of merging compact binaries inferred using gravitational waves through GWTC-3

GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run

Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog

Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run

Population properties of compact objects from the second LIGO–Virgo gravitational-wave transient catalog

A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo

...

are the top articles of Francesco Chiadini at Università degli Studi di Salerno.

What are Francesco Chiadini's research interests?

The research interests of Francesco Chiadini are: Electromagnetics - Optics

What is Francesco Chiadini's total number of citations?

Francesco Chiadini has 15,520 citations in total.

What are the co-authors of Francesco Chiadini?

The co-authors of Francesco Chiadini are Akhlesh Lakhtakia, Alfonso Grassi, OFELIA DURANTE, Raúl J. Martín-Palma, Giorgio Giurato, Rita Massa.

    Co-Authors

    H-index: 77
    Akhlesh Lakhtakia

    Akhlesh Lakhtakia

    Penn State University

    H-index: 49
    Alfonso Grassi

    Alfonso Grassi

    Università degli Studi di Salerno

    H-index: 44
    OFELIA DURANTE

    OFELIA DURANTE

    Università degli Studi di Salerno

    H-index: 32
    Raúl J. Martín-Palma

    Raúl J. Martín-Palma

    Universidad Autónoma de Madrid

    H-index: 26
    Giorgio Giurato

    Giorgio Giurato

    Università degli Studi di Salerno

    H-index: 23
    Rita Massa

    Rita Massa

    Università degli Studi di Napoli Federico II

    academic-engine

    Useful Links