Michele Heurs

Michele Heurs

Leibniz Universität Hannover

H-index: 107

Europe-Germany

About Michele Heurs

Michele Heurs, With an exceptional h-index of 107 and a recent h-index of 80 (since 2020), a distinguished researcher at Leibniz Universität Hannover, specializes in the field of Nonclassical laserinterferometry, Quantum control.

His recent articles reflect a diverse array of research interests and contributions to the field:

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

Perfect Mirror Effects in Metasurfaces of Silicon Nanodisks at Telecom Wavelength

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Ultralight vector dark matter search using data from the KAGRA O3GK run

Broadband detection of 18 teeth in an 11-dB squeezing comb

Quantum enhanced balanced heterodyne readout for differential interferometry

Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

Michele Heurs Information

University

Leibniz Universität Hannover

Position

Professor of Physics

Citations(all)

89007

Citations(since 2020)

63774

Cited By

50184

hIndex(all)

107

hIndex(since 2020)

80

i10Index(all)

207

i10Index(since 2020)

182

Email

University Profile Page

Leibniz Universität Hannover

Michele Heurs Skills & Research Interests

Nonclassical laserinterferometry

Quantum control

Top articles of Michele Heurs

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,Y Asali,G Ashton,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,AM Baer,S Bagnasco,Y Bai,J Baird,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,A Branch,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,A Brillet,M Brinkmann

Journal

Physical Review D

Published Date

2024/1/5

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

Authors

C Fletcher,J Wood,R Hamburg,P Veres,CM Hui,E Bissaldi,MS Briggs,E Burns,WH Cleveland,MM Giles,A Goldstein,BA Hristov,D Kocevski,S Lesage,B Mailyan,C Malacaria,S Poolakkil,A von Kienlin,CA Wilson-Hodge,M Crnogorčević,J DeLaunay,A Tohuvavohu,R Caputo,SB Cenko,S Laha,T Parsotan,R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,Luca Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andríc,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare

Journal

arXiv preprint arXiv:2308.13666

Published Date

2023/8/25

The detection of GW170817 (Abbott et al. 2017b) coincident with the short gamma-ray burst GRB 170817A (Goldstein et al. 2017; Savchenko et al. 2017) was a groundbreaking discovery for the multimessenger era. Not only was it the first binary neutron star (BNS) merger detected by the gravitational-wave (GW) instruments Advanced LIGO (Aasi et al. 2015) and Advanced Virgo (Acernese et al. 2014), it was also the first, and to date only, GW detection with a confirmed electromagnetic (EM) counterpart. Since then, the search for EM emission from more of these extreme events has been at the forefront of multimessenger astronomy, particularly in the gamma-ray energy band, since GRB 170817A demonstrated that BNS mergers are a progenitor of short gamma-ray bursts (GRBs; Abbott et al. 2017a). GWs have also been observed from the mergers of other compact objects, such as binary black hole (BBH) and …

Perfect Mirror Effects in Metasurfaces of Silicon Nanodisks at Telecom Wavelength

Authors

Mariia Matiushechkina,Andrey B Evlyukhin,Vladimir A Zenin,Boris N Chichkov,Michèle Heurs

Journal

Advanced Optical Materials

Published Date

2024

This article explores the design and optimization of nanodisk metasurfaces for achieving high reflectivity at a defined wavelength. The telecom wavelength of 1550 nm is particularly focused, selected for its potential applications in next‐generation gravitational wave detectors. At this wavelength, the research goes toward the development of thin, low‐loss, high‐reflective coatings, where the metasurface can be chosen as an alternative. An optimization process for the dimensional parameters of nanodisks is proposed based on a systematic tuning approach, which facilitates the realization of various configurations of high‐reflective metasurfaces. The concept of the “magnetic mirror effect” is examined in detail, where the magnetic dipole resonance aligns with the anapole state. Additionally, high reflectivity at the electric dipole resonance (“electric mirror effect”) and at the excitation of several multipole moments is …

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Authors

AG Abac,ML Chiofalo,G Nieradka,R Pegna,C North,R Bhandare,G Pierra,A Amato,JG Baier,D Chen,B Haskell,F Robinet,M Fyffe,M Arogeti,P Stevens,DD White,TF Davies,E Payne,M Wright,K Johansmeyer,K Hayama,P-F Cohadon,CG Collette,D Sellers,S Hoang,V Sipala,H Heitmann,T O'Hanlon,B Edelman,G McCarrol,AD Huddart,KD Sullivan,T Harder,A Garron,TA Clarke,YT Huang,J Junker,M Hennig,N Hirata,J Portell,R McCarthy,M Weinert,R Poulton,G Ballardin,D Bankar,A Bianchi,M Montani,CD Panzer,X Chen,R Takahashi,J Lange,K Schouteden,Yitian Chen,A Sasli,F Yang,LM Modafferi,ME Zucker,J O'Dell,D Lumaca,AP Spencer,M Millhouse,G Quéméner,M Norman,MJ Szczepańczyk,S-C Hsu,ST Countryman,C Chatterjee,AL James,KN Nagler,E Chassande-Mottin,W Kiendrebeogo,M Tacca,FJ Raab,TR Saravanan,VP Mitrofanov,S Bernuzzi,C Adamcewicz,L Conti,C Tong-Yu,J Golomb,X Li,A Perego,ERG von Reis,J Woehler,G Bogaert,F Fidecaro,B Shen,JM Ezquiaga,D Macri,V Juste,S Sachdev,JD Bentley,R Sturani,TP Lott IV,K Takatani,D Beniwal,U Dupletsa,A Boumerdassi,F Glotin,Y Lee,R Bhatt,A Couineaux,M Wade,N Kanda,J Novak,S Bini,I Ferrante,RA Alfaidi,N Johny,LE Sanchez,J Heinze,J Zhang,M Kinley-Hanlon,AJ Weinstein,T Sainrat,NN Janthalur,A Trovato,A Romero,K Tomita,DE McClelland,B Fornal,M Heurs,AM Gretarsson,A Chincarini,BB Lane,AE Romano,V Fafone,FY Khalili,F Linde,C Messick,A Heffernan,J Gargiulo,V JaberianHamedan,SW Reid,D Moraru,D Pathak,M Iwaya,G Grignani,T Yan,K AultONeal,SA Pai,Y Xu,IM Pinto,KW Chung,C Palomba,J Tissino,T Klinger,Ll M Mir,K Kwan,C Posnansky

Published Date

2024/3/5

Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U (1) B− L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U (1) B− L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.

Ultralight vector dark matter search using data from the KAGRA O3GK run

Authors

AG Abac,R Abbott,H Abe,I Abouelfettouh,F Acernese,K Ackley,C Adamcewicz,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,I Aguilar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Al-Jodah,C Alléné,A Allocca,S Al-Shammari,PA Altin,S Alvarez-Lopez,A Amato,L Amez-Droz,A Amorosi,C Amra,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Andia,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,J Anglin,S Ansoldi,JM Antelis,S Antier,M Aoumi,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,N Aritomi,F Armato,N Arnaud,M Arogeti,SM Aronson,KG Arun,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,G Avallone,S Babak,F Badaracco,C Badger,S Bae,S Bagnasco,E Bagui,Y Bai,JG Baier,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,S Banagiri,B Banerjee,D Bankar,P Baral,JC Barayoga,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,SD Barthelmy,MA Barton,I Bartos,S Basak,A Basalaev,R Bassiri,A Basti,M Bawaj,P Baxi,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,D Belardinelli,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M Ben Yaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,N Bevins,R Bhandare,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,S Bhowmick,A Bianchi,IA Bilenko,G Billingsley,A Binetti,S Bini,O Birnholtz,S Biscoveanu,A Bisht,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,F Bobba

Journal

arXiv preprint arXiv:2403.03004

Published Date

2024/3/5

Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.

Broadband detection of 18 teeth in an 11-dB squeezing comb

Authors

Dennis Wilken,Jonas Junker,Michèle Heurs

Journal

Physical Review Applied

Published Date

2024/3/4

Squeezed vacuum is a versatile resource of bipartite entanglement for quantum metrology and information. Optical parametric oscillators generate these states in a frequency comb structure. We show the simultaneous detection of 18 teeth with 11 dB of squeezing each. We built a 1.5-m-long optical resonator to increase the spectral teeth density and significantly increase the detection bandwidth by employing unbalanced homodyne detection instead of balanced. Our approach can be a crucial step in using the scaling potential of high-frequency squeezed states in quantum information.

Quantum enhanced balanced heterodyne readout for differential interferometry

Authors

Daniel W Gould,Vaishali B Adya,Sheon SY Chua,Jonas Junker,Dennis Wilken,Bram JJ Slagmolen,Min Jet Yap,Robert L Ward,Michèle Heurs,David E McClelland

Journal

arXiv preprint arXiv:2401.04940

Published Date

2024/1/10

We present an experimental demonstration of balanced heterodyne readout that circumvents the 3 dB heterodyne signal-to-noise penalty on a dual Michelson sensor. Our readout obtains both amplitude and phase quadrature information simultaneously. We also employ a high-frequency spectrally entangled, two-mode squeezed state to show further signal-to-noise improvement of an injected audio-band signal. We achieve a quantum enhancement of 3.5 dB, consistent with our experimental efficiencies and dephasing. This technique is applicable for quantum-limited high-precision experiments, with application to searches for quantum gravity, gravitational wave detection and wavelength-multiplexed quantum communication.

Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

Authors

R Abbott,H Abe,F Acernese,K Ackley,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Al-Jodah,C Alléné,A Allocca,M Almualla,PA Altin,A Amato,L Amez-Droz,A Amorosi,S Anand,A Ananyeva,R Andersen,SB Anderson,WG Anderson,M Andia,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,JM Antelis,S Antier,M Aoumi,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,G Ashton,Y Aso,M Assiduo,Sad Melo,SM Aston,P Astone,F Aubin,K AultONeal,S Babak,A Badalyan,F Badaracco,C Badger,S Bae,S Bagnasco,Y Bai,JG Baier,L Baiotti,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,G Baltus,S Banagiri,B Banerjee,D Bankar,P Baral,JC Barayoga,J Barber,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,SD Barthelmy,MA Barton,I Bartos,S Basak,A Basalaev,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,Freija Beirnaert,M Bejger,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M Ben Yaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,N Bevins,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,M Bilicki,G Billingsley,S Bini,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair

Journal

arXiv preprint arXiv:2302.03676

Published Date

2023/2/7

The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.

Constraints on the cosmic expansion history from GWTC-3

Authors

R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andric,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Assis De Souza Melo,SM Aston,P Astone,F Aubin,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,R Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,G Billingsley,M Bilicki,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,MA Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode

Journal

Astrophysical Journal

Published Date

2023/6/1

The discovery of a gravitational wave (GW) signal from a binary neutron star (BNS) merger (Abbott et al. 2017a) and the kilonova emission from its remnant (Coulter et al. 2017; Abbott et al. 2017b) provided the first GW standard siren measurement of the cosmic expansion history (Abbott et al. 2017c). As pointed out by Schutz (1986), the GW signal from a compact binary coalescence directly measures the luminosity distance to the source without any additional distance calibrator, earning these sources the name “standard sirens”(Holz & Hughes 2005). Measuring the cosmic expansion as a function of the cosmological redshift is one of the key avenues with which to explore the constituents of the universe, along with the other canonical probes such as the cosmic microwave background (CMB; Spergel et al. 2003, 2007; Komatsu et al. 2011; Ade et al. 2014, 2016; Aghanim et al. 2020), baryon acoustic oscillations …

GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run

Authors

Richard Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,Kazuhiro Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Akcay,T Akutsu,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M BenYaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov

Journal

Physical Review X

Published Date

2023/12/4

The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶ 00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶ 00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin p astro> 0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with p astro> 0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star–black-hole binaries, and we identify …

Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

Authors

R Abbott,H Abe,F Acernese,K Ackley,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,C Alléné,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,H Asada,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,S Babak,F Badaracco,C Badger,S Bae,Y Bae,S Bagnasco,Y Bai,JG Baier,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,M Bilicki,G Billingsley,S Bini,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boër,G Bogaert,M Boldrini,GN Bolingbroke,LD Bonavena,R Bondarescu,F Bondu,E Bonilla,R Bonnand,P Booker

Journal

arXiv preprint arXiv:2304.08393

Published Date

2023/4/17

Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.

Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO–Virgo observing run O3a

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais

Journal

The Astrophysical Journal

Published Date

2023/10/1

Fast radio bursts (FRBs) are millisecond duration radio pulses that have been observed out to cosmological distances, several with inferred redshifts greater than unity (Lorimer et al. 2007; Cordes & Chatterjee 2019; Petroff et al. 2019). Although intensely studied for more than a decade, the emission mechanisms and progenitor populations of FRBs are still one of the outstanding questions in astronomy. Some FRBs have been shown to repeat (Amiri et al. 2019a; CHIME/FRB Collaboration et al. 2019; Kumar et al. 2019), and the recent association of an FRB with the Galactic magnetar SGR 1935+ 2154 proves that magnetars can produce FRBs (Bochenek et al. 2020; CHIME/FRB Collaboration et al. 2020). Alternative progenitors and mechanisms to produce nonrepeating FRBs are still credible and have so far not been ruled out (Zhang 2020a). Data currently suggest that both repeating and nonrepeating classes of …

High-efficiency silicon metasurface mirror on a sapphire substrate

Authors

Mariia Matiushechkina,Andrey B Evlyukhin,Vladimir A Zenin,Michèle Heurs,Boris N Chichkov

Journal

Optical Materials

Published Date

2023/4/1

For a possible implementation of high-efficiency Si-nanosphere metasurface mirrors functioning at telecom wavelengths in future gravitational wave detectors, exact dimensional and configuration parameters of the total system, including substrate and protective coating, have to be determined a priori. The reflectivity of such multi-layer metasurfaces with embedded Si nanoparticles and their potential limitations need to be investigated. Here we present the results on how the substrate and protective layer influence optical properties and demonstrate how dimensional and material characteristics of the structure alter light reflectivity. Additionally, we consider the impact of manufacturing imperfections, such as fluctuations of Si nanoparticle sizes and their exact placement, on the metasurface reflectivity. Finally, we demonstrate how high reflectivity of the system can be preserved under variations of the protective layer …

arXiv: Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

Authors

AG Abac,ML Chiofalo,G Nieradka,R Pegna,C North,R Bhandare,G Pierra,A Amato,JG Baier,D Chen,B Haskell,F Robinet,M Fyffe,M Arogeti,N Raza,DD White,E Payne,M Wright,K Johansmeyer,K Hayama,P-F Cohadon,CG Collette,D Sellers,S Hoang,V Sipala,H Heitmann,T O'Hanlon,B Edelman,G McCarrol,GS Bonilla,T Harder,TA Clarke,YT Huang,J Junker,M Hennig,N Hirata,J Portell,R McCarthy,M Weinert,Y-C Yang,R Poulton,G Ballardin,D Bankar,A Bianchi,M Montani,R Goetz,CD Panzer,X Chen,R Takahashi,J Lange,K Schouteden,A Sasli,LM Modafferi,ME Zucker,J O'Dell,D Lumaca,AP Spencer,M Millhouse,M Norman,MJ Szczepańczyk,S-C Hsu,ST Countryman,C Chatterjee,AL James,E Chassande-Mottin,M Tacca,FJ Raab,TR Saravanan,VP Mitrofanov,S Bernuzzi,C Adamcewicz,L Conti,J Golomb,X Li,ERG von Reis,J Woehler,G Bogaert,F Fidecaro,B Shen,JM Ezquiaga,V Juste,S Sachdev,JD Bentley,YA Kas-danouche,R Sturani,M Toscani,K Takatani,D Beniwal,U Dupletsa,F Glotin,Y Lee,R Bhatt,A Couineaux,M Wade,N Kanda,J Novak,S Bini,I Ferrante,RA Alfaidi,N Johny,LE Sanchez,J Heinze,J Zhang,M Kinley-Hanlon,M Pegoraro,A Van de Walle,T Sainrat,NN Janthalur,A Trovato,A Romero,K Tomita,DE McClelland,B Fornal,M Heurs,AM Gretarsson,ND Koliadko,A Chincarini,BB Lane,AE Romano,M Martinez,V Fafone,FY Khalili,F Linde,C Messick,A Heffernan,J Gargiulo,V JaberianHamedan,SW Reid,D Moraru,D Pathak,M Iwaya,G Grignani,T Karydas,K AultONeal,SA Pai,IM Pinto,KW Chung,C Palomba,J Tissino,T Klinger,Ll M Mir,K Kwan,JK Katsuren,TP Lott,C Posnansky,S Di Pace,F Badaracco,NA Johnson,VA Martinez,A Ain

Published Date

2023/8/7

Despite the growing number of candidates and the insight they have provided, the astrophysical sites and processes that produce the observed merging binaries remain uncertain. Multiple viable scenarios exist. The binary black holes could have formed in an isolated stellar binary (eg, Bethe & Brown 1998; Dominik et al. 2015; Inayoshi et al. 2017; Marchant et al. 2016; de Mink & Mandel 2016; Gallegos-Garcia et al. 2021), via dynamical interactions in dense stellar clusters (eg, Portegies Zwart & McMillan 2000; Banerjee et al. 2010; Ziosi et al. 2014; Morscher et al. 2015; Mapelli 2016; Rodriguez et al. 2016a; Askar et al. 2017) or triple systems (eg, Antonini et al. 2017; Martinez et al. 2020; Vigna-Gómez et al. 2021), or via gas capture in the disks of active galactic nuclei (AGN; eg, McKernan et al. 2012; Bartos et al. 2017; Fragione et al. 2019; Tagawa et al. 2020).

Population of merging compact binaries inferred using gravitational waves through GWTC-3

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,PF De Alarcón,S Akcay,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,F Antonini,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,Stanislav Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,François Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose

Journal

Physical Review X

Published Date

2023/3/29

We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc− 3 yr− 1 and the neutron star–black hole merger rate to be between 7.8 and 140 Gpc− 3 yr− 1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc− 3 yr− 1 at a fiducial redshift (z= 0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional …

Search for eccentric black hole coalescences during the third observing run of LIGO and virgo

Authors

AG Abac,R Abbott,H Abe,F Acernese,K Ackley,C Adamcewicz,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,I Aguilar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Al-Jodah,C Alléné,A Allocca,M Almualla,PA Altin,S Álvarez-López,A Amato,L Amez-Droz,A Amorosi,S Anand,A Ananyeva,R Andersen,SB Anderson,WG Anderson,M Andia,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,JM Antelis,S Antier,M Aoumi,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,N Aritomi,F Armato,N Arnaud,M Arogeti,SM Aronson,KG Arun,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,S Babak,A Badalyan,F Badaracco,C Badger,S Bae,S Bagnasco,Y Bai,JG Baier,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,G Baltus,S Banagiri,B Banerjee,D Bankar,P Baral,JC Barayoga,J Barber,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,SD Barthelmy,MA Barton,I Bartos,S Basak,A Basalaev,R Bassiri,A Basti,M Bawaj,P Baxi,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M Ben Yaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,N Bevins,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,M Bilicki,G Billingsley,A Binetti,S Bini,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,M Bitossi,M-A Bizouard,JK Blackburn

Journal

arXiv preprint arXiv:2308.03822

Published Date

2023/8/7

Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass ) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities at Gpc yr at 90\% confidence level.

arXiv: Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB During the LIGO--Virgo Observing Run O3a

Authors

R Abbott,ML Chiofalo,C North,R Bhandare,A Amato,B Haskell,F Robinet,M Fyffe,Kazuhiro Yamamoto,N Raza,DD White,E Payne,J Woehler,K Hayama,J Cameron,P-F Cohadon,CG Collette,P Hopkins,D Sellers,V Sipala,H Heitmann,PM Meyers,B Edelman,Takahiro Tanaka,M Stover,AD Huddart,T Harder,LEH Datrier,J Junker,N Hirata,R McCarthy,D Sawant,S Walsh,R Poulton,G Ballardin,D Bankar,M Montani,R Goetz,D Michilli,X Chen,R Takahashi,J Lange,ME Zucker,J O'Dell,D Lumaca,AP Spencer,G Nelemans,M Millhouse,M Norman,MJ Szczepańczyk,V Boschi,ST Countryman,C Chatterjee,MH Hennig,K Yokogawa,T Nguyen,AL James,E Chassande-Mottin,M Tacca,FJ Raab,UD Rapol,TR Saravanan,VP Mitrofanov,S Bernuzzi,L Conti,X Li,ERG von Reis,G Bogaert,F Fidecaro,V Juste,S Sachdev,JD Bentley,S Ghonge,R Sturani,D Beniwal,R DeSalvo,M Wade,N Kanda,S Bini,I Ferrante,AG Hernandez,LE Sanchez,J Heinze,J Zhang,M Kinley-Hanlon,A Rocchi,M Pegoraro,AJ Weinstein,NN Janthalur,A Trovato,HS Kuo,JN Linley,DE McClelland,CY Chiang,B Fornal,S Nozaki,M Heurs,AM Gretarsson,A Chincarini,BB Lane,M Zhan,V Fafone,M Piendibene,F Linde,C Messick,L van der Schaaf,S Ha,V JaberianHamedan,SW Reid,D Moraru,G Grignani,SA Pai,SC McGuire,M Giesler,IM Pinto,Santosh Roy,KW Chung,C Palomba,Ll M Mir,TP Lott,JS Tsao,S Di Pace,F Badaracco,H Asada,R Kozu,A Ain,K Rink,F Cleva,AS Markosyan,E Katsavounidis,MHPM van Putten,Y Setyawati,S Grunewald,B Barr,JJ Oh,T Tsuzuki,EJ Sanchez,B Giacomazzo,A Trapananti,K Prasai,N Letendre,AS Ubhi,P Cerdá-Durán,G Kuehn,M Bhardwaj,YC Huang,E Cuoco,M Fukushima,P Szewczyk,PJ Easter

Published Date

2022/3/22

We search for gravitational-wave transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB), during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15: 00 UTC-1 Oct 2019 15: 00 UTC). Triggers from 22 FRBs were analyzed with a search that targets compact binary coalescences with at least one neutron star component. A targeted search for generic gravitational-wave transients was conducted on 40 FRBs. We find no significant evidence for a gravitational-wave association in either search. Given the large uncertainties in the distances of the FRBs inferred from the dispersion measures in our sample, however, this does not conclusively exclude any progenitor models that include emission of a gravitational wave of the types searched for from any of these FRB events. We report $90% $ confidence lower bounds on the distance to each FRB for a range of gravitational-wave progenitor models. By combining the inferred maximum distance information for each FRB with the sensitivity of the gravitational-wave searches, we set upper limits on the energy emitted through gravitational waves for a range of emission scenarios. We find values of order - erg for a range of different emission models with central gravitational wave frequencies in the range 70-3560 Hz. Finally, we also found no significant coincident detection of gravitational waves with the repeater, FRB 20200120E, which is the closest known extragalactic FRB.

First joint observation by the underground gravitational-wave detector KAGRA with GEO 600

Authors

LIGO Scientific Collaboration,Virgo Collaboration,KAGRA Collaboration,R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Assis de Souza Melo,SM Aston,P Astone,F Aubin,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,MA Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba

Journal

Progress of Theoretical and Experimental Physics

Published Date

2022/6

We report the results of the first joint observation of the KAGRA detector with GEO 600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British–German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO–KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals …

Reconstructing Gaussian bipartite states with a single polarization-sensitive homodyne detector

Authors

Jonas Junker,Dennis Wilken,Daniel Steinmeyer,Michèle Heurs

Journal

Optics Express

Published Date

2022/9/12

We present a novel method to fully estimate Gaussian bipartite polarization states using only a single homodyne detector. Our approach is based on [Phys. Rev. Lett.102, 020502 (2009)10.1103/PhysRevLett.102.020502], but circumvents additional optics, and thereby losses, in the signal path. We provide an intuitive explanation of our scheme without needing to define auxiliary modes. With six independent measurements, we fully reconstruct the state’s covariance matrix. We validate our method by comparing it to a conventional dual-homodyne measurement scheme.

Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

Authors

TARUN SOURADEEP,R Abbott,LIGO Scientific Collaboration,Virgo Collaboration,KAGRA Collaboration

Published Date

2022

We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h0 of about 10−25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or …

See List of Professors in Michele Heurs University(Leibniz Universität Hannover)

Michele Heurs FAQs

What is Michele Heurs's h-index at Leibniz Universität Hannover?

The h-index of Michele Heurs has been 80 since 2020 and 107 in total.

What are Michele Heurs's top articles?

The articles with the titles of

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

Perfect Mirror Effects in Metasurfaces of Silicon Nanodisks at Telecom Wavelength

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Ultralight vector dark matter search using data from the KAGRA O3GK run

Broadband detection of 18 teeth in an 11-dB squeezing comb

Quantum enhanced balanced heterodyne readout for differential interferometry

Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

...

are the top articles of Michele Heurs at Leibniz Universität Hannover.

What are Michele Heurs's research interests?

The research interests of Michele Heurs are: Nonclassical laserinterferometry, Quantum control

What is Michele Heurs's total number of citations?

Michele Heurs has 89,007 citations in total.

What are the co-authors of Michele Heurs?

The co-authors of Michele Heurs are Ian Petersen, Klemens Hammerer, Matthew R James, Elanor Huntington, S Z Sayed Hassen, Katanya B. Kuntz.

    Co-Authors

    H-index: 76
    Ian Petersen

    Ian Petersen

    Australian National University

    H-index: 51
    Klemens Hammerer

    Klemens Hammerer

    Leibniz Universität Hannover

    H-index: 43
    Matthew R James

    Matthew R James

    Australian National University

    H-index: 23
    Elanor Huntington

    Elanor Huntington

    Australian National University

    H-index: 8
    S Z Sayed Hassen

    S Z Sayed Hassen

    University of Mauritius

    H-index: 8
    Katanya B. Kuntz

    Katanya B. Kuntz

    University of Waterloo

    academic-engine

    Useful Links