Prayush Kumar

Prayush Kumar

Cornell University

H-index: 126

North America-United States

Professor Information

University

Cornell University

Position

___

Citations(all)

100489

Citations(since 2020)

67382

Cited By

31117

hIndex(all)

126

hIndex(since 2020)

83

i10Index(all)

292

i10Index(since 2020)

238

Email

University Profile Page

Cornell University

Research & Interests List

Gravitational-Wave Astronomy

Modeling of Compact Binaries of Black Holes and Neutron Stars

Numerical Relativity

LIGO

Top articles of Prayush Kumar

Search for intermediate mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

Intermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of …

Authors

Rich Abbott,Thomas D Abbott,Fausto Acernese,Kendall Ackley,Carl Adams,Naresh Adhikari,Rana X Adhikari,Vaishali B Adya,Christoph Affeldt,Deepali Agarwal,Michalis Agathos,Kazuhiro Agatsuma,Nancy Aggarwal,Odylio D Aguiar,Lorenzo Aiello,Anirban Ain,P Ajith,Tomotada Akutsu,Simone Albanesi,Annalisa Allocca,Paul A Altin,Alex Amato,Chandana Anand,Shreya Anand,Alena Ananyeva,Stuart B Anderson,Warren G Anderson,Masaki Ando,Tomas Andrade,Nicolas Andres,Tomislav Andrić,Svetoslava V Angelova,Stefano Ansoldi,JM Antelis,Sarah Antier,Stephen Appert,Koji Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi

Journal

Astronomy & astrophysics

Published Date

2022/3/1

Constraints on the cosmic expansion history from GWTC-3

The discovery of a gravitational wave (GW) signal from a binary neutron star (BNS) merger (Abbott et al. 2017a) and the kilonova emission from its remnant (Coulter et al. 2017; Abbott et al. 2017b) provided the first GW standard siren measurement of the cosmic expansion history (Abbott et al. 2017c). As pointed out by Schutz (1986), the GW signal from a compact binary coalescence directly measures the luminosity distance to the source without any additional distance calibrator, earning these sources the name “standard sirens”(Holz & Hughes 2005). Measuring the cosmic expansion as a function of the cosmological redshift is one of the key avenues with which to explore the constituents of the universe, along with the other canonical probes such as the cosmic microwave background (CMB; Spergel et al. 2003, 2007; Komatsu et al. 2011; Ade et al. 2014, 2016; Aghanim et al. 2020), baryon acoustic oscillations …

Authors

R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andric,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Assis De Souza Melo,SM Aston,P Astone,F Aubin,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,R Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,G Billingsley,M Bilicki,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,MA Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode

Journal

Astrophysical Journal

Published Date

2023/6/1

All-sky Search for Continuous Gravitational Waves from Isolated Neutron Stars in the Early O3 LIGO Data

We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from− 10− 8 to 10− 9 Hz/s. No statistically significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h 0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are∼ 1.1× 10− 25 at 95% confidence level. The minimum upper limit of 1.10× 10− 25 is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary-and asteroid-mass …

Authors

R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Assis de Souza Melo,SM Aston,P Astone,F Aubin,K Aultoneal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,Sharan Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,Freija Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M Benyaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boër,G Bogaert,M Boldrini,GN Bolingbroke

Journal

Physical Review D

Published Date

2022/11/28

Observation of eccentric binary black hole mergers with second and third generation gravitational wave detector networks

We introduce an improved version of the eccentric, nonspinning, inspiral-Gaussian-process merger approximant (ENIGMA) waveform model that utilizes a more stable and robust numerical method to smoothly connect the analytical relativity-based inspiral evolution with the numerical relativity-based merger phase. We find that this ready-to-use model can:(i) produce physically consistent signals, without reporting any failures, when sampling over 1M samples that were randomly chosen over the m {1, 2}∈[5 M⊙, 50 M⊙] parameter space, and the entire range of binary inclination angles;(ii) produce waveforms within 0.04 seconds, averaged over 1000 iterations, from an initial gravitational wave frequency f GW= 15 Hz and at a sample rate of 8192 Hz; and (iii) reproduce the physics of quasicircular mergers, since its overlap with SEOBNRv4 waveforms is O≥ 0.99 assuming advanced LIGO zero detuned high power …

Authors

Zhuo Chen,EA Huerta,Joseph Adamo,Roland Haas,Eamonn O’Shea,Prayush Kumar,Chris Moore

Journal

Physical Review D

Published Date

2021/4/12

Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software.

Authors

Rich Abbott,Thomas D Abbott,Sheelu Abraham,Fausto Acernese,Kendall Ackley,Carl Adams,Rana X Adhikari,Vaishali B Adya,Christoph Affeldt,Michalis Agathos,Kazuhiro Agatsuma,Nancy Aggarwal,Odylio D Aguiar,Amit Aich,Lorenzo Aiello,Anirban Ain,Ajith Parameswaran,Gabrielle Allen,Annalisa Allocca,Paul A Altin,Alex Amato,Shreya Anand,Alena Ananyeva,Stuart B Anderson,Warren G Anderson,Svetoslava V Angelova,Stefano Ansoldi,Sarah Antier,Stephen Appert,Koji Arai,Melody C Araya,Joseph S Areeda,Marc Arène,Nicolas Arnaud,Scott M Aronson,Kg G Arun,Stefano Ascenzi,Gregory Ashton,Stuart M Aston,Pia Astone,Florian Aubin,Peter Aufmuth,Kellie AultONeal,Corey Austin,Valerie Avendano,Stanislav Babak,Philippe Bacon,Francesca Badaracco,Maria KM Bader,Sangwook Bae,Anne M Baer,Jonathon Baird,Francesca Baldaccini,Giulio Ballardin,Stefan W Ballmer,Anna-marie Bals,Alexander Balsamo,Gregory Baltus,Sharan Banagiri,Deepak Bankar,Rameshwar S Bankar,Juan C Barayoga,Claudio Barbieri,Barry C Barish,David Barker,Kevin Barkett,Pablo Barneo,Fabrizio Barone,Bryan Barr,Lisa Barsotti,Matteo Barsuglia,Daniel Barta,Jeffrey Bartlett,Imre Bartos,Riccardo Bassiri,Andrea Basti,Mateusz Bawaj,Joseph C Bayley,Marco Bazzan,Bence Bécsy,Michal Bejger,Imene Belahcene,Angus S Bell,Deeksha Beniwal,Michael G Benjamin,Joe D Bentley,Fabio Bergamin,Beverly K Berger,Gerald Bergmann,Sebastiano Bernuzzi,Christopher PL Berry,Diego Bersanetti,Alessandro Bertolini,Joseph Betzwieser,Rohan Bhandare,Ankit V Bhandari,Jeffrey Bidler,Edward Biggs,Igor A Bilenko,Garilynn Billingsley,Ross Birney,Ofek Birnholtz,Sebastien Biscans,Matteo Bischi,Sylvia Biscoveanu,Aparna Bisht,Guldauren Bissenbayeva,Massimiliano Bitossi,Marieanne A Bizouard,Kent K Blackburn,Jonathan Blackman,Carl D Blair,David G Blair,Ryan M Blair,Fabrizio Bobba,Nina Bode,Michel Boer,Yannick Boetzel,Gilles Bogaert,Francois Bondu,Edgard Bonilla,Romain Bonnand,Phillip Booker,Boris A Boom,Rolf Bork,Valerio Boschi,Sukanta Bose,Vladimir Bossilkov,Joel Bosveld,Yann Bouffanais,Antonella Bozzi,Carlo Bradaschia,Patrick R Brady,Alyssa Bramley,Marica Branchesi,Jim E Brau,Matteo Breschi,Tristan Briant,Joseph H Briggs,Francesco Brighenti,Alain Brillet,Marc Brinkmann,Patrick Brockill,Aidan F Brooks,Jonathan Brooks,Daniel D Brown,Sharon Brunett,Giacomo Bruno,Robert Bruntz,Aaron Buikema

Journal

SoftwareX

Published Date

2021/1/1

Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run

Gravitational lensing occurs when a massive object bends spacetime in a way that focuses light rays toward an observer (see Bartelmann 2010, for a review). Lensing observations are widespread in electromagnetic astrophysics and have been used to, among other purposes, make a compelling case for dark matter (Clowe et al. 2004; Markevitch et al. 2004), discover exoplanets (Bond et al. 2004), and uncover massive objects and structures that are too faint to be detected directly (Coe et al. 2013).Similarly to light, when gravitational waves (GWs) travel near a galaxy or a galaxy cluster, their trajectories curve, resulting in gravitational lensing (Ohanian 1974; Thorne 1982; Deguchi & Watson 1986; Wang et al. 1996; Nakamura 1998; Takahashi & Nakamura 2003). For massive lenses, this changes the GW amplitude without affecting the frequency evolution (Wang et al. 1996; Dai & Venumadhav 2017; Ezquiaga et al …

Authors

Richard Abbott,Thomas D Abbott,S Abraham,Fausto Acernese,K Ackley,A Adams,C Adams,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,KM Aleman,G Allen,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arene,N Arnaud,SM Aronson,KG Arun,Y Asali,G Ashton,SM Aston,P Astone,F Aubin,P Aufmuth,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,S Bae,AM Baer,S Bagnasco,Y Bai,J Baird,M Ball,G Ballardin,SW Ballmer,M Bals,A Balsamo,G Baltus,S Banagiri,D Bankar,RS Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,R Bhandare,AV Bhandari,D Bhattacharjee,S Bhaumik,J Bidler,IA Bilenko,G Billingsley,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,J Blackman,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,A Branch,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,A Brillet,M Brinkmann

Journal

The Astrophysical Journal

Published Date

2021/12/10

Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO's and Advanced Virgo's first three observing runs

We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called p y s toch on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from F α, Θ<(0.013–7.6)× 10− 8 erg cm− 2 s− 1 …

Authors

R Abbott,TD Abbott,S Abraham,Fausto Acernese,K Ackley,A Adams,C Adams,Rana X Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,KM Aleman,G Allen,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,Koya Arai,Koji Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,SM Aronson,H Asada,Y Asali,G Ashton,Y Aso,SM Aston,P Astone,F Aubin,P Aufmuth,K Aultoneal,C Austin,S Babak,F Badaracco,MKM Bader,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,M Bals,A Balsamo,G Baltus,S Banagiri,D Bankar,RS Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,D Bersanetti,A Bertolini,J Betzwieser,R Bhandare,AV Bhandari,D Bhattacharjee,S Bhaumik,J Bidler,IA Bilenko,G Billingsley,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,J Blackman,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia

Journal

Physical Review D

Published Date

2021/7/27

The Binary Black Hole Population after LIGO/Virgo's O3a Observing Run

Advanced LIGO and Virgo's O3a observing run has significantly expanded and refined our understanding of the stellar-mass binary black hole (BBH) population. Past detections have, to date, suggested a picture in which BBHs have low spins, masses concentrated below 45 solar masses, and preferentially equal mass ratios. In this talk, I will present the latest lessons learned during O3a, describing LIGO and Virgo's updated measurements of the spin, mass, and redshift distributions of BBHs. I will additionally speculate about the implications of these measurements for understanding the origin and evolution of compact binary mergers.

Authors

T Callister,LIGO Scientific Collaboration,Virgo Collaboration

Journal

American Astronomical Society Meeting Abstracts

Published Date

2021/1

Professor FAQs

What is Prayush Kumar's h-index at Cornell University?

The h-index of Prayush Kumar has been 83 since 2020 and 126 in total.

What are Prayush Kumar's research interests?

The research interests of Prayush Kumar are: Gravitational-Wave Astronomy, Modeling of Compact Binaries of Black Holes and Neutron Stars, Numerical Relativity, LIGO

What is Prayush Kumar's total number of citations?

Prayush Kumar has 100,489 citations in total.

What are the co-authors of Prayush Kumar?

The co-authors of Prayush Kumar are Richard O'Shaughnessy, Gregory Harry, Sean McWilliams, Harald Pfeiffer, Geoffrey Lovelace, Nicolas Yunes.

Co-Authors

H-index: 131
Richard O'Shaughnessy

Richard O'Shaughnessy

Rochester Institute of Technology

H-index: 131
Gregory Harry

Gregory Harry

American University

H-index: 108
Sean McWilliams

Sean McWilliams

West Virginia University

H-index: 103
Harald Pfeiffer

Harald Pfeiffer

University of Toronto

H-index: 89
Geoffrey Lovelace

Geoffrey Lovelace

California State University, Fullerton

H-index: 79
Nicolas Yunes

Nicolas Yunes

University of Illinois at Urbana-Champaign

academic-engine

Useful Links